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Abstract—Blockchain and smart contract technologies have 

emerged as innovative approaches to trustworthy and reliable 

service computing. With the growing popularity of 

decentralized applications, the quantity of smart contracts has 

seen an exponential increase. Research on testing smart 

contracts has primarily focused on identifying specific 

vulnerabilities in smart contracts and blockchains. However, 

generating a robust test suite for smart contracts remains a 

daunting challenge. The state-of-the-art DynaMOSA 

algorithm uses many-objective optimization for test case 

generation, introducing preference sorting and dynamic 

target selection strategies. Yet, under hyper many-objective 

conditions, the algorithm faces difficulties including 

insufficient selection pressure and reduced efficiency. This 

paper proposes a solution to these issues by introducing a 

many-objective optimization algorithm with a dimensionality 

reduction strategy. The goal is to condense an extensive 

dataset into a smaller, more manageable and effective dataset 

using specific reduction criteria. Additionally, this paper 

utilizes 28 open-source Solidity projects from GitHub for 

testing. The experimental results show that compared to 

DynaMOSA, the proposed approach achieves higher testing 

coverage on most projects under test and shows a noticeable 

improvement in algorithm efficiency for the automatic 

generation of Solidity Tests. 

Keywords-automatic test case generation; many-objective 
optimization; DynaMOSA; principal component analysis; laplacian 
eigenmap 

1.  INTRODUCTION 

Bitcoin whitepaper [1] signaled the inception of blockchain, 
a decentralized distributed ledger enabling peer-to-peer 
transactions without mutual trust. Ethereum, a leading public 
blockchain platform, supports smart contracts [2] - 
specialized programs that use the blockchain's consensus 
mechanism to autonomously reach agreements. These 
contracts, equivalent to written contracts with terms coded, 
are reliably executed by the Ethereum Virtual Machine 
(EVM) and their immutability ensures determinism. 
Ethereum smart contracts, primarily written in Solidity, are 
sets of code and data hosted on the Ethereum blockchain. 
They can be triggered by either other smart contracts or users. 
Each account has persistent storage and an Ether balance 
adjusted by transactions [3]. Although Solidity smart 
contracts seem similar to JavaScript or C programs in syntax, 

their unique semantics can lead to unconventional reliability 
and security issues. Developers often need to employ creative 
strategies to express desired functions, which can introduce 
vulnerabilities and bugs arising from discrepancies between 
Solidity's semantics and the programmer's intentions [4]. 
Due to the popularity of Decentralized Applications 
(DApps), the number of smart contracts has dramatically 
increased. These contracts, involving significant digital 
assets and immutable post-deployment, encounter more 
stringent reliability and security demands than conventional 
software [5]. Since 2016, various security incidents have 
uncovered diverse vulnerabilities in smart contracts, resulting 
in considerable financial losses. Notable incidents include the 
Decentralized Autonomous Organization (DAO)'s hacking in 
2016, Ethereum's Parity wallet bug in 2017, and the 
BeautyChain (BEC) attack in 2018 [6]. Given these severe 
repercussions, ensuring the reliability and dependability of 
smart contracts has become a pressing concern.  
Luu et al. [7] and Atzei et al. [8] have identified design flaws 
in published smart contracts. Zou et al. [9] further validated 
that many developers desire tools to ensure smart contract 
code correctness. This highlights the urgency of preventing 
smart contract bugs and vulnerabilities through robust testing 
before deployment. To date, research on testing smart 
contracts is primarily focused on identifying known 
vulnerabilities [10] and test case creation is often done 
manually. However, this approach is labor-intensive, time-
consuming, and heavily relies on the skills and experience of 
smart contract developers, considering the growing quantity 
and complexity of smart contracts. Therefore, the automatic 
generation of efficient and reliable test cases to detect bugs 
and vulnerabilities in smart contracts is vital [11]. The lack 
of effective automatic test suites generator is a significant 
obstacle to transitioning technologies from academia to 
industry, making the automatic generation of test suites a 
critical research area at present [12]. 
This paper reframes the problem of automatic test case 
generation for smart contracts as a many-objective 
optimization problem. We decompose a smart contract into 
multiple branches, treat each as an optimization goal, and by 
optimizing program branch coverage, we search for optimal 
test cases. To overcome the shortcomings of existing 
frameworks, we propose a many-objective test case 
generation algorithm using dimensionality reduction 
strategies, namely, principal component analysis (PCA) and 
Laplacian Eigenmap (LE). This approach reduces numerous 
test case generation objectives to a few essential ones, 
thereby generating test cases with high coverage and 
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improving test case generation efficiency. The approach's 
effectiveness is measured by the branch coverage and 
execution time of the generated tests, and its superiority and 
feasibility are validated with 28 open-source Solidity smart 
contract projects collected from GitHub. 
The remainder of the paper is organized as follows. Section 
2 presents related studies; Section 3 introduces the smart 
contract test case generation problem as a many-objective 
optimization problem; Section 4 describes the proposed 
many-objective search algorithm with dimensionality 
reduction for the automatic generation of Solidity tests of 
Smart Contracts; and Section 5 describes the experimental 
setup and analyzes the results. Finally, Section 6 presents the 
conclusions. 

2. RELATED STUDIES 

From the previous century onwards, a multitude of research 
has been conducted on automatic test case generation by 
scholars around the world. Numerous methodologies for the 
automated generation of test cases have been proposed [13]. 
Notably, the automatic test case generation technique rooted 
in heuristic search algorithms has achieved substantial 
progress. In essence, the challenge of test case generation 
presents itself as a multi-objective problem. The process of 
program data flow execution can be visualized through a 
control flow graph, with each statement block representing 
an objective. The aim is to generate test cases that cover these 
objectives, with the evaluation of fitness calculations being 
determined based on various testing coverage  criteria, for 
example, line, branch, and mutation coverage. Inspired by 
biological evolution, genetic algorithms operate with a set of 
(candidate) solutions or chromosomes. They employ iterative 
applications of evaluation, selection, crossover, and mutation 
to yield the subsequent generation of optimal solutions [14]. 
DynaMOSA (Many-objective Sorting Algorithm with 
Dynamic target selection) [15] is a state-of-the-art algorithm 
purpose-built for automated test case generation. Its 
methodology employs the principles of NSGA-II-inspired 
multi-objective optimization, facilitating the production of 
compact, efficient, and high-coverage test suites [16]. 
Empirical evidence illustrates DynaMOSA's significant 
superiority over alternative test case generation algorithms, 
especially concerning branch and mutation coverage across a 
diverse range of Java class projects [17], [18]. In EvoSuite 
[19], basic static analysis is initially used to extract 
information regarding classes and their constructors, 
methods, and fields. Bytecode is then inserted when the Java 
class loader loads the classes. Ultimately, the meta-heuristic 
search algorithm (DynaMOSA) [20] is employed to 
automatically generate JUnit test cases aimed at maximizing 
code coverage. 
Fraser et al. [17] introduced the concept of Whole Suite (WS) 
optimization within the EvoSuite framework, marking the 
first application of many-objective optimization to test case 
generation. This approach strives to cover all objectives 
simultaneously with the entire test suite while minimizing its 
total size. Fraser's work demonstrated superior results 
compared to those targeting single objectives. Sahin et al. 
[21] developed an archive-based, multi-criterion Artificial 

Bee Colony (ABC) algorithm for test suite generation. This 
algorithm maximizes the fitness functions of various 
objectives for object-oriented software. The Archive-Based 
Artificial Bee Colony algorithm (ABC) retains covered 
objectives in an archive to effectively utilize available search 
resources. The feasibility and effectiveness of the algorithm 
were verified through experiments. The introduction of an 
archive into the ABC algorithm leads to faster convergence 
speed than the basic ABC algorithm and achieves a higher 
coverage rate. 
Panichella et al. [20] introduced an enhanced multi-objective 
genetic algorithm, known as Many-objective Sorting 
Algorithm (MOSA), building upon the test suite concept. The 
fundamental premise involved an initial preference sorting to 
select optimal individuals, followed by a fast non-dominated 
sort for the remaining candidates. These individuals then 
underwent genetic operations like selection, crossover, and 
mutation. Nevertheless, in automatic test case generation, the 
principal challenge was the decrease in efficiency brought 
about by the overwhelming number of objectives. To address 
this, Panichella et al. proposed the dynamic target selection 
strategy known as DynaMOSA [15] to bolster the algorithm's 
search performance. The key idea centered on examining 
coverage targets that held a dominant position via a control 
dependency graph. The approach entailed dynamic target 
selection to reduce the number of objectives per algorithm 
search, consequently improving test case search 
performance.  
 To achieve higher test case coverage, Panichella et al. [15] 
proposed a multi-criterion coverage strategy based on the 
DynaMOSA algorithm. This primarily involved handling 
objectives such as branch, line, and mutation coverage 
simultaneously. Following this, to integrate non-functional 
metrics into test case generation, Panichella and his team 
presented an adaptive approach, termed ADynaMOSA 
(Adaptive Many-Objective Sorting Algorithm with Dynamic 
Target Selection) [22]. This approach factored the test case 
execution time and memory usage into the algorithm's 
optimization objectives. The result was a maintained 
performance while generating test cases with high coverage. 
However, for many-objective multi-criteria test case 
generation  problems, there exist dozens or even hundreds of 
covering objectives in each class under test, which poses a 
significant challenge to the algorithm’s search performance 
and scalability.  
Aiming at alleviating the above-mentioned issue, Li et al. 
[23] proposed PCA-DynaMOSA algorithm for Java program, 
addressing its inefficiencies in scenarios with a large number 
of objectives. It is utilizing the dimensionality reduction 
technique for a set of optimization objectives or fitness 
matrixes, transforming original objective space data into a 
new smaller space, where dimensions represent objectives. It 
can generate high-coverage test cases within a constrained 
timeframe. It was tested on 49 projects from the SF110 
benchmarking dataset, demonstrating superiority over 
DynaMOSA in line, branch, mutation, multi-criteria 
coverage, and search efficiency. 
Although search-based test case generation methods can 
effectively produce relatively comprehensive test suites, they 
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still fall short when it comes to generating test cases for inputs 
with complex structures. Dynamic Symbolic Execution 
(DSE) [24], [25] can achieve high code coverage by 
executing programs concretely, collecting symbolic 
conditions, and solving constraint systems. To mitigate the c 
challenges, it is worth considering a fusion of symbolic 
execution and heuristic search [26]. Galeotti et al. [27] 
expanded the genetic algorithm (GA) in the EvoSuite unit test 
generator by integrating DSE into an adaptive approach. In 
this system, feedback from the search process determines 
when DSE was the appropriate solution to use for a search. 
Experimental findings indicated that this hybrid approach 
provided improvements over its individual constituent 
techniques alone, GA and DSE. 
Li et al. [28] proposed an innovative local search algorithm 
that unites adaptive simulated annealing and symbolic path 
constraints to optimize the neighborhood search of ideal 
solutions. This approach was designed to address limitations 
associated with both global search methods and local search 
strategies using the alternating variable method. The adaptive 
simulated annealing algorithm was introduced to effectively 
explore parameters of each statement and avoid local optimal 
solutions. The symbolic path constraints were utilized to 
navigate constraints encountered during test case execution, 
ensuring high code coverage. The research team 
demonstrated an effective balance between resource 
consumption for global and local search. They compared 
their algorithm with leading test case generation algorithm, 
using the SF110 open-source benchmarking datasets to 
demonstrate its efficacy. 
Furthermore, some researchers have combined machine 
learning and search-based methods to enhance the efficiency 
of test case generation. Modonato [29] proposed Tardis, a 
unit test generator for Java programs, which integrates 
dynamic symbolic execution, search-based testing, and 
machine learning to efficiently generate comprehensive 
class-level test suite. Tardis employs the following 
approaches: (1) It explores the path space of the target 
program using dynamic symbolic execution; (2) It 
instantiates complete test cases using genetic search 
algorithms; and (3) It applies a priority ranking to symbolic 
formulas that are more likely to correspond to feasible 
program paths, utilizing a primitive classification algorithm. 
Currently, there are two main frameworks for generating test 
cases for smart contracts. The first is AGSolt [30], designed 
specifically for generating test cases for smart contracts with 
the intention of achieving high branch coverage in Solidity 
smart contract unit testing. Utilizing both random testing and 
the DynaMOSA algorithm, AGSolt has managed to attain 
substantial branch coverage. Empirical evidence indicates 
that, in terms of branch coverage, DynaMOSA outperforms 
the fuzzer. Despite lacking additional selection, crossover, 
and mutation operations, the fuzzer does not exhibit greater 
speed compared to search-based test case generation. This 
might be attributed to the fact that DynaMOSA's preference 
sorting and dynamic selection of coverage objectives 
techniques that minimizes the time spent on searching for 
optimal test suite. 

The second framework, SynTest-Solidity [31], was put 
forward by Mitchell et al. It features a command-line 
interface (CLI), which simplifies testing during the 
development process and enables developers to modify 
various parameters related to the test case generation process. 
Additionally, SynTest-Solidity offers an online web service 
that allows developers to utilize the tool without needing 
local installation or configuration. It serves as an automatic 
test case generation and fuzzing framework for Solidity, 
encompassing various meta-heuristic search algorithms, such 
as random search (traditional fuzzing) and genetic algorithms 
(i.e., NSGA-II, MOSA, and DynaMOSA). In generating test 
cases for 20 real-world Solidity smart contracts, SynTest-
Solidity has demonstrated its effectiveness by achieving an 
average branch coverage of 61%, thereby validating its utility 
in testing Solidity smart contracts. 

3. AUTOMATIC TEST-CASE GENERATION PROBLEM FOR 

SOLIDITY SMART CONTRACTS 

The central issue addressed in this paper is the automatic 
generation of test cases, specifically for smart contracts. The 
goal is to define a test suite that includes multiple test cases 
for all methods in the contracts under test, where each test 
case could differ in terms of the quantity and type of test 
statements included. Two critical considerations underscore 
this process. Firstly, it is essential to minimize the number of 
test case statements as lengthy test cases not only increase 
manual costs but often lead to redundancy in the statement 
function. This can be mitigated by simplifying 
interdependent conditional relationships, which consequently 
shortens the testing cycle, making it preferable to have fewer 
statements in a test case. Secondly, the target coverage rate 
needs to be maximized for automatic white-box test case 
generation. In this context, the concept of coverage criteria is 
used to evaluate the sufficiency of the current test case for 
testing the contract under test. Common coverage criteria for 
traditional programs include line, branch, and mutation 
coverage, each offering a unique perspective for verifying 
test adequacy. Studies suggest that a higher testing coverage 
results in more comprehensive testing of the program under 
test with the generated test cases [32]. 
In this section, we analyze and describe the problem of the 
automatic generation of test cases for smart contracts, 
reframing it as a many-objective optimization problem. We 
then describe the search-based test case generation 
framework, including its comprehensive design, coding 
architecture, genetic operations, and fundamental algorithmic 
process, laying the groundwork for subsequent algorithm 
improvements. 

3.1. Control Flow and Control Dependency Graph 

A Control Flow Graph (CFG) depicts the execution process of 
a program [33]. It can be represented as

. Where, Node denotes the set of block 
statement nodes, corresponding to bytecode instructions after 
the smart contract is compiled. Based on different standards, 
a node could represent a single line of code, multiple lines of 
statements, or branches. Edge symbolizes the intermediary 
paths between nodes, which could comprise a single line or 
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multiple lines of statements. However, unlike Node, an Edge 
does not physically exist within the code but is an abstract 
concept that illustrates the flow of data between bytecodes. 
start refers to the entry node of the Control Flow Graph (i.e., 
the program under test), and end corresponds to the exit node 
of the Control Flow Graph.  
The Control Flow Graph (CFG) of a smart contract, obtained 
from its source code and serving as an intermediate 
representation, has the following characteristics: (1) It 
maintains the three structures found in traditional language 
CFGs: sequence, selection, and loop. (2) Each node in the 
CFG represents a single valid statement rather than a block of 
statements. Based on these attributes, the following rules to 
construct the CFG is defined: each functional structure in the 
smart contract has its unique CFG (i.e., a sub-CFG). The 
'require' statement is treated as a selection structure, and for 
'switch' structures, each 'case' is regarded as a selection 
condition.  
While a CFG can provide a comprehensive overview of a 
program's execution process, certain edges in the CFG can 
introduce unnecessary nodes, which could lead to inefficient 
use of resources, as search operations may be wasted on them 
[34]. To address this inefficiency, the COMPACIFYCFG 
algorithm, proposed in [30], utilizes the COMPACIFY 
process to effectively eliminate these redundant nodes. After 
establishing the control dependency relationships among 
nodes, a control dependency graph can be extracted from the 
control flow graph. 

3.2. Test Cases and Test Suite 

A test case is a sequence of calls targeted at one or more 
methods within a smart contract, whereas a test suite refers to 
a collection of test cases formed for the entire smart contract. 
A test suite can be represented as , 
where each test case can consist of multiple method call 
sequences, represented as 

. The critical aspect of the test 
case optimization problem is the generation of these test cases, 
particularly the creation of sequences for method calls. As 
such, it's essential to extract the methods from the smart 
contract and establish the input and output types, values, and 
call sequences for each one.  
In the test case generation problem, the process begins by 
identifying the target function of the program under test. 
Subsequently, the input and output values of various methods 
are continuously optimized until a particular condition is 
met—namely, finding the optimal solution for the conditions 
of the target function. For generating test cases for smart 
contracts, all branches of the program under test are first 
extracted to form a target set. This set is then treated as a 
constraint system, which is ultimately converted into a target 
function until an optimal solution set is found. In single-
objective search, a test case is generated for each target. 
However, many-objective test case generation, unlike single-
objective search, can optimize multiple targets 
simultaneously. That is, the final generated test case may 
cover multiple targets. The generated test cases are then 
combined to form the final test suite. This approach enables 

the goal of generating many test case coverage targets while 
minimizing the number of test statements. 

3.3. Coverage Criteria 

Coverage criteria serve as a crucial benchmark for assessing 
the adequacy of software testing. Branch coverage, which 
involves executing all possible outcomes of each branch, 
ensures that all code branches of the program under test are 
covered. Compared to other test case coverage criteria (e.g., 
Statement, Mutation coverahe), branch coverage can detect 
the correctness of branch conditions in the code under test in 
a relatively shorter time, thereby improving testing efficiency. 
Therefore, this paper adopts branch coverage as the evaluation 
criterion for test cases. 
The branch coverage criterion requires that, in the generated 
test suite, every "TRUE" and "FALSE" branch result of each 
decision statement in the program under test should be 
executed at least once. The coverage rate of a specific branch 
in a test case can be represented by the following function: 

                (1) 
The definition of branch distance is as follows: 

 if branch has been covered 

 if current branch has been excuted twice 

 other 

(2) 

accDist: This stands for 'approach distance', which is the 
distance from the actual branch executed in the test case  to 
the target branch, that is, the number of control dependencies 
between two branch nodes in the control flow graph. 

3.4. Many-objective Test Case Generation 

In practical applications, many-objective optimization is a 
universal challenge spanning across all disciplines. These 
objectives are intrinsically conflicting and subjected to a 
variety of constraints [35]. Notably, it is implausible to 
achieve optimal outcomes for all objectives at once; each 
objective requires individual weighting. A many-objective 
optimization problem consists of three or more objective 
functions and a set of related equality and inequality 
constraints [31]. This concept can be mathematically 
described as follows: 

 
 

 
 

               (3) 
 

 
 
 

In the above equation, {i=1,2,3,…,m} represents 
the objective function, and  represent the 
constraint functions,  is the n-
dimensional decision variable.

 represents the 

feasible domain for the above equation. 
In this many-objective optimization problem, there are 

 objective functions,  minimization objective 

functions  maximization objective function, and 
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 constraint functions, including  inequality 
constraints and  equality constraints. 
In practical engineering design, the decision variables 

are designated and controlled by the user, the 
objective function is used to evaluate system performance, the 
constraints represent the limits that the decision variables must 
meet, and the goal is to optimize these performance indicators. 
A feasible solution is a set of design variables that satisfy all 
constraint conditions, and the feasible domain can be defined 
as the collection of all feasible solutions. 

               (4) 

This can also be expressed as: 
               (5) 

3.5. Encoding Design 

In the context of test case generation, a test case is used as a 
chromosome. The encoding represents individuals as input 
sequences, each comprising an environment block and a 
transaction block, both of which are encoded as key-value 
mappings. The environment includes block information, such 
as current timestamp and block number, return values of calls, 
data size, and external code size, etc. The transaction 
comprises the address of the sending account (from), 
transaction amount (value), maximum gas amount for contract 
execution (gas limit), and the input data for contract execution 
(data). The input data is represented as a value array, where 
the first element is always the function selector, and the 
remaining elements represent function parameters. The 
function selector is calculated using the Application Binary 
Interface (ABI) and extracts the first four bytes of the Keccak 
(SHA-3) hash of the function signature. The individual 
encoding method in the test case generation problem is shown 
in Figure 1. 

 
Figure 1. Encoding design 

3.6. Population initialization 

After extracting the required information, the test case 
population is initialized randomly with a fuzzing approach. 
Each test case compose of various statement, and can be 
represented as 

 Those statements can be 
categorized into two types. The first type is the construction 
statement, which is used to deploy smart contracts on the 
blockchain. Such a statement serves as the first statement 

for every test case , ensuring each test case that 
can call function statements instantiates a new instance of a 

smart contract. This type of statement contains the 
information necessary for deploying relevant smart contract 
instances on the blockchain, including the input variables 
required by the smart contract constructor and transaction 
metadata, such as the amount of Ether sent with the 
transaction and the account sending the transaction. The 
second type is the function statement, which is used to create 
transactions that call functions within the deployed smart 
contracts. In fact, the only way to interact with smart contracts 
in Ethereum is to send transactions to their addresses. In the 
test cases, all statements apart from the first one (i.e., the 
construction function statement) are function statements 
responsible for traversing the branches of the smart contracts. 
This type of statement contains references to the function to 
be covered, its input variables, and transaction metadata. A 
group of test cases is initialized by creating N random test 
cases, where N is the population size, i.e., the number of test 
cases in any given generation. 

3.7. Search Operations 

The search operations of the genetic algorithm primarily 
include selection, crossover, and mutation [36]. This 
replicates the biological evolution process of "survival of the 
fittest," aiming to guide the population's evolution towards 
superior genes, thereby achieving an optimal solution.  

3.7.1.Selection Operation 

The core idea of the selection operator is to select two 
individuals from the current population as parents, who then 
generate the next generation of the population following 
certain rules. During the evolutionary process, it is generally 
believed that individuals with higher fitness values are more 
suitable as parents. However, this poses a risk of losing other 
genes, leading to population convergence around a solution 
and falling into local optima. Therefore, preserving excellent 
genes, maintaining population diversity, and improving 
genetic efficiency are all equally important. 
Based on the idea of a tournament, during each evolution, a 
certain number of individuals are randomly selected from the 
parents, and the one with the highest fitness is chosen for the 
genetic operation. This process is repeated until the size of 
the child population is the same as the parent population. This 
method greatly maintains population diversity. Therefore, the 
selection operator based on the tournament to ensure 
population diversity and convergence is used for the smart 
contract test case generation problem. 

3.7.2.Crossover Operation 

The crossover operator involves performing a crossover 
operation on two individuals selected from the parent 
population. First, a crossover point is determined, and then the 
gene strings are swapped at the crossover point while 
maintaining the rest of the positions unchanged, thus 
generating two new individuals. Single-point crossover entails 
pairing individuals in the population, selecting an arbitrary 
position in the individual's encoding string as the crossover 
point, and swapping the subsequent gene strings based on this 
point, with other positions remaining unchanged. This can 
produce two new individuals. This is shown in Figure 2. 

422



 
Figure 2. Single-point crossover 

Single-point crossover requires less computational effort 
compared to other crossover operations. For large-scale 
problems, it can search the solution space faster, and single-
point crossover can preserve more parent information in two 
individuals. It effectively inherits superior genetic 
information and accelerates convergence. Therefore, the 
single-point crossover is used for the smart contract test case 
generation problem. 

3.7.3.Mutation Operation 

Mutation involves modifying some encodings on the gene 
positions of the current chromosome (individual) to form a 
new individual. It introduces randomness to discover 
unexplored regions in the search space, thereby enhancing the 
algorithm's global search capability. To ensure the uniformity 
of individual mutation, three mutation operations, including 
insertion, modification, and deletion of the statements 
contained in the test case, each with a 1/3 probability, is used 
for the smart contract test case generation problem. 

� Deletion: Each statement of a test case of length S is 

deleted with a probability of 1/S, ensuring that the test 

case can still run normally after deletion. 

� Modification: Each statement of a test case of length S is 

modified with a probability of 1/S. Different variable 

types have different value ranges and modification 

methods. Value generation includes two methods: 

random and mutation pool value extraction. 

� Insertion: Unlike deletion and modification operations, 

this step requires generating method calls according to the 

environment and method, followed by insertion. 

3.8. Test Case Generation Framework 

The test case generation framework used in this paper, as 
shown in Figure 3, is based on [30], and is primarily divided 
into two main parts: initialization module and test loop 
module. During the initialization phase, the characteristics of 
the smart contract (program under test) are extracted to create 
the first generation of test cases, setting the stage for further 
improvement during the test loop.  
Within this framework, the input consists of a smart contract 
written in Solidity language, which is a combination of code 
and data residing at a specific address on the Ethereum 
blockchain. This is followed by the ABI (Application Binary 
Interface) Analysis wherein the Solidity code is compiled into 
bytecode, and an ABI file is created that contains vital 
information such as function names and input types necessary 
for test case generation, capturing also the hard-coded values 
of the contract. Next, to track the branches to be traversed and 
those already covered, CFG Extraction is performed using the 
Python EVM-CFG-BUILDER library to extract the control 
dependencies from the bytecode, with each branch node's 
opcode identified for branch distance calculations. 
Subsequently, COMPACIFY [30] algorithm is executed on 
redundant nodes to eliminate them, aiming at budget reduction 
in the CDG Generation phase. 

Figure 3. The overall framework 
During the test loop, an exhaustive search for the best test case 
is conducted until the budget is expended. This loop can be 
broken down into two parts, starting with the algorithm 
module that utilizes integrated algorithms such as 
DynaMOSA, PCA-DynaMOSA, and LE-DynaMOSA. These 
algorithms, all based on the genetic principle and inspired by 
biological evolution, work together to obtain comprehensive 
test cases through iterative application of evaluation, 
selection, crossover, and mutation. The result archive module 
then follows, wherein each test case is run on the Ethereum 
blockchain, beginning with a constructor statement. After 
executing and evaluating all test cases to generate a distance 
vector for fitness description, the normalized branch distances 
are updated, and all traversed edges and uncovered branches 
are calculated. Finally, if a test case excels over the best one 
found so far for a particular branch, it is stored in an archive 
that systematically tracks the best test case for each branch, 
culminating in a return at the end of the process, thereby 
reflecting the framework's methodical approach to test case 
generation. 

4. UTILIZING MANY-OBJECTIVE SEARCH AND 

DIMENSIONALITY REDUCTION IN THE AUTO-GENERATION OF 

SOLIDITY TESTS FOR BLOCKCHAIN SMART CONTRACTS 

DynaMOSA [15], proposed by Panichella, is one of the most 
popular many-objective test case generation algorithms, it 
has been used to generate efficient test cases for variety of 
systems and programing languages [18], [20], [23]. It 
incorporates strategies such as archiving, dynamic selection 
of objectives and preference sorting based on the foundation 
of NSGA-II. On one hand, the preference sorting function 
determines the test case with the lowest objective score (e.g., 
branch distance + approach level for branch coverage) for 
each uncovered target. And assign all these test cases to rank 
0, in other words, give them a higher chance of surviving into 
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the next generation. On another hand, the dynamic selection 
of objectives uses the control dependency graph to derive 
which targets are independent of any others (that is the targets 
that are free of control dependencies) and which ones can be 
covered only after satisfying previous targets in the graph, 
and selects only those targets that are free of control 
dependencies as the initial set of objectives. 
Despite the substantial progress that existing multi- and 
many-objective optimization algorithms have made in 
solving automatic test case generation problems, they still 
face considerable challenges. Most notably, these algorithms 
often experience a significant decrease in performance when 
applied to large-scale many-objective optimization problems. 
This issue necessitates the exploration of strategies to reduce 
the dimensionality of the objectives, as such a reduction 
could potentially enhance the performance of the test case 
generators. 
Dimensionality reduction refers to the process of 
transforming high-dimensional data into lower-dimensional 
data based on certain criteria. It can decrease computational 
requirements and enhance the search efficiency of the 
algorithm by eliminating redundant objectives. Therefore, it 
can be utilized to address hyper-many-objective optimization 
problems. In the context of test case generation, strategies 
like preference sorting and dynamic selection of objectives, 
deployed in the DynaMOSA algorithm can help alleviate 
issues associated with a high number of objectives to some 
extent. However, this solution remains insufficient when 
generating effective test cases for complex modern software 
programs, with tens, and sometimes even hundreds, of coverage 
objectives (branches) in a single class.  
Hence, in this paper, we propose a solution to the 
performance degradation of the DynaMOSA algorithm in 
large-scale many-objective optimization problems by 
incorporating dimensionality reduction algorithms in smart 
contract test case generation. Our primary objective is to 
reduce the dimensionality of the objective space in the test 
case generation problems, filtering out redundant and invalid 
feature information. Then, carry out many-objective sorting 
on population individuals using the reduced objective set. 
Moreover, the application of dimensionality reduction for test 
case generation problem is primarily justified by three 
considerations: first, the inherently vast quantity of objectives 
within the problem; second, the potential for a single test case 
to encompass multiple objectives; and third, the presence of 
correlations amongst different coverage objectives. 

4.1. PCA for Smart Contract Test Case Generation 

Principal Component Analysis (PCA) [37] is a statistical 
technique that uses orthogonal transformation to convert a set 
of observations of potentially correlated variables into a set of 
values of linearly uncorrelated variables. Moreover, PCA 
serves as a tool to reduce multi-dimensional data to a lower 
dimension while retaining  most of the information. It 
incorporates standard deviation, covariance, and eigenvectors. 
The main steps in PCA are as follows: 

� Column vectors and row vectors of size  represent a 

collection of  objectives ( ) of size . 

� The average value of the objective μ is described as: 

                                (6) 

� Each objective has a different average value: 
                                  (7) 

� The covariance matrix is calculated as follows: 
                      (8) 

  Where . 

� Compute the covariance matrix 's eigenvectors and 

eigenvalues . 

� Form a new matrix from the first k eigenvectors 

corresponding to the largest eigenvalues. 

� Project the sample points onto the chosen eigenvectors to 

obtain the result. 

The principal advantage of Principal Component Analysis 
(PCA) is its low sensitivity to noise, along with its reduced 
requirements for storage capacity and memory. Furthermore, 
it enhances efficiency due to the dimensionality reduction of 
the data during the processing. The benefits of PCA 
encompass three main points: firstly, there is no redundancy 
in data represented by orthogonal components; secondly, it 
lessens the complexity of the objectives; and thirdly, PCA 
effectively minimizes noise by selecting the basis associated 
with the largest variances, while smaller changes are 
automatically disregarded [37]. 

While PCA brings certain benefits, it's not without its 
limitations. One notable drawback is that the process of 
dimensionality reduction can be computationally demanding, 
consuming a significant portion of the system's resources. 
Additionally, accurately calculating the covariance matrix, a 
crucial step in PCA, can pose a challenge [37]. Finally, PCA 
often struggles to capture invariant features in the data, which 
could limit its effectiveness in some applications. Therefore, 
to minimize the computational time, this paper also employs 
the Laplacian Eigenmap (LE) method for dimensionality 
reduction, in addition to PCA. 

4.2. LE for Smart Contract Test Case Generation 

Laplacian Eigenmap (LE) [38] is an unsupervised nonlinear 
finite element analysis technique that seeks low-dimensional 
data while preserving the "local properties" of the manifold. 
Initially, LE generates a neighborhood graph G', where each 
datum  is linked to its nearest neighborhood. All and in 
G' are connected by an edge, and the Gaussian kernel function is 
employed, where the weight of the edge is assessed as:  

                           (9) 
where  specifies the variance of the Gaussian function 
leading to the adjacency matrix (W). To reduce the 
dimensions from X to Y, the cost function defined by LE is 
minimized as: 

              (10) 
Optimizing the cost function implies that the distance between 

 and  in the high-dimensional space is smaller, and 
consequently, the distance between  and  in the low-
dimensional space is also smaller. Furthermore, by calculating 
the diagonal matrix D and the Laplacian matrix L of G', the 
cost function in the above equation can be rephrased as an 
eigenvalue decomposition problem, as follows:  
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          (11) 
where L can be defined as L = W - D; D is a diagonal matrix 
with elements being the row sum of W, like = , and 
the elements of W represent whether a pair of vertices are 
adjacent; the elements of W are either 1 or 0, where diagonal 
elements are 0. Hence, the aim is to make  subject to 
minimizing . 
The main steps of LE are as follows: 

� Construct a neighborhood graph using the adjacency 

matrix. 

� Calculate the weight of each edge of the adjacency graph. 

� Obtain the new space by eigen-decomposition through 

optimizing the cost function. 

In the context of test case generation, the LE algorithm is 
introduced not only to reduce the dimensionality of the 
objective set-in test case generation problems but also for 
comparison with the PCA algorithm. We consider the relative 
strengths and weaknesses of the algorithms in terms of branch 
coverage and time efficiency. This enables the appropriate 
algorithm to be selected according to the actual situation in 
real-world scenarios. 

Algorithm 1: Improved Multi-objective Test Case Generation Algorithm 
Based on Dynamic Grouping and Dimensionality Reduction Strategy 

Input  
      : Set of objectives 

Output  
  Test suite 

Algorithmic Process  
1 Procedure  
2  = Select targets in  with not control dependencies  
3       
4     Create initial population :   
5     archive = UPDATE_ARCHIVE( )  
6 UPDATE_TARGETS(  //Update objectives 

based on the control dependency graph and objective 
correspondence 

7 while TERMINATION_CONDITION is not met do  
8   = group( ) //Group objectives by a certain number 
9   [i]= PCA( )  ||  [i]= LE( )  //Perform 

dimensionality reduction on the grouped objectives separately 
10   = SORT  [i]) //Combine the reduced objectives 
11  PREFERENCE_SORT( ) //Perform preference sorting  
12  CROWED_SORT( ) //Perform crowding distance 

sorting  
13 end while 
14 T = archive //Return the final archive as the optimal test case set 
15 end Procedure 

4.3. Algorithmic Process for Test Case Generation based on 

Dynamic Grouping and Dimensionality Reduction 

Strategy 

As inferred from the analysis of dimensionality reduction 
algorithms, the process of reducing the objectives will also 
entail additional computational time. If the number of 
objectives in the test case generation problem is large, the 
computational process of the dimensionality reduction 
algorithm will accordingly be more complex. This could lead 
to issues such as lengthy computation time and difficulties in 
convergence. Therefore, it can be considered to reduce the 
dimension of the objectives in a dynamically grouped manner: 
group the objectives by a certain number, carry out 
dimensionality reduction separately, and then integrate the 

reduced objectives to obtain the final objective set. The 
pseudocode for the improved many-objective test case 
generation algorithm based on dynamic grouping and 
dimensionality reduction strategy is shown in Algorithm 1. 

Naturally, within the grouping strategy, the group size is hard 
to determine in advance, given its impact on the algorithm's 
performance. The appropriate group size needs to be chosen 
empirically, based on the number of objectives and through 
experimentation in real-world situations. This paper intends to 
conduct experiments with varying group sizes to determine an 
empirical value. The flowchart for the test case generation 
algorithm of DynaMOSA, based on dynamic grouping and 
dimensionality reduction strategies, is shown in Figure 4.

 
Figure 4. Flowchart of test case generation algorithm based on dynamic 

grouping and dimensionality reduction strategy 

5. EXPERIMENTAL DESIGN AND RESULT ANALYSIS 

In this section, we will conduct experiments using our 
proposed algorithms, and compare their performance with that 
of DynaMOSA, the state-of-the-art many-objective test case 
generation algorithm implemented in AGSolt [30]. We have 
named our novel many-objective test case generation 
algorithms using PCA and LE as PCA-DynaMOSA and LE-
DynaMOSA, respectively. 
The experiments designed and conducted in this study were 
primarily aimed at answering the following research 
questions (RQs) for many-objective test case generation of 
smart contracts: 

y g g
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� RQ 1: When considering branch coverage during the 

generation of test cases for smart contracts, how does the 

performance of the PCA-DynaMOSA and LE-

DynaMOSA algorithms compare to both the 

DynaMOSA algorithm and each other? 

� RQ 2: Regarding search efficiency during the test case 

generation process, how do the PCA-DynaMOSA and 

LE-DynaMOSA algorithms stack up against the 

DynaMOSA algorithm, as well as against each other? 

� RQ 3: Under the dimensionality reduction strategy, to 

what extent does the grouping size affect the test 

coverage rate and search efficiency? Moreover, how can 

insights gleaned from the experimental results guide the 

choice of grouping size in practical scenarios?

5.1. Experimental Design 

5.1.1.Evaluation Metrics 

To benchmark the efficacy of our proposed algorithms in 
generating smart contract test cases, we leverage a set of 
evaluation metrics. These metrics are applied during 
experimental testing and are crucial in facilitating a 
comprehensive comparative analysis of the performance of 
different algorithms. 
Testing coverage: The coverage rate evaluates the 
sufficiency of test cases generated by the algorithm for smart 
contract under test. We choose branch coverage as the 
evaluation criterion, and it can be calculated using the 
formula below: 

 (12) 

Execution Time: Execution time mainly includes the total time of 
the algorithm and the average total time, represented as follows: 

          (13) 

5.1.2.Experimental Setup 

The primary focus of this study is to improve and optimize 
the state-of-the-art algorithm, DynaMOSA [15] in AGSolt 
[30], for smart contract test case generation. The current 
framework, written in Python, operates within the Ubuntu 
system. The detailed specifications of the experimental test 
platform are presented in Table 1. 

Table 1. Experimental environment 

Hardware Intel(R) Core(TM) i9-10900F CPU @ 2.80GHz 

Software 
Ubuntu 22.04 

Python 3.9 

Solidity 0.4.9 

Table 2. List of smart contracts under test 

Smarta Contract # of 
Branches Smarta Contract # of 

Branches 
BasicToken 8 LotteryFor10 12 

Casino 11 LotteryMultipleWinners 27 

DosAuction 7 MyAdvancedToken 3 

EasyPayAndWithDraw 8 OpenAddressLottery 19 

EZCoin 11 PullOverPush 7 

EtherBank 17 ProveIT 5 

FixedSupplyToken 22 PermissionGroups 66 

FundRaising 21 Rubixi 66 

Greeter 65 RICO 13 

Greeter3 57 Reentrance 14 

GuardCheck 14 SecureAuction 6 

Gift_1_ETH 18 tutorial-25 58 

GuessTheNumberChallenge 8 tutorial-26 71 

IdentityManager 7 VulnerableTwoStep 10 

5.1.3.Datasets 

The experimental data primarily comprises some of the most 
popular Solidity smart contract projects available on GitHub. 
As illustrated in Table 2, among these twenty-eight projects, 
the smallest project has as few as three branches, while the 
largest project encompasses as many as seventy branches. 
Moreover, the smart contracts selected in this paper adhered 
to the following criteria: (1) They do not have any user-
defined inputs; (2) They are standalone programs that do not 
call other smart contracts during their execution. 

5.1.4.Experiment Setup 

Considering a plethora of experimental validation outcomes 
conducted by a multitude of researchers [15], [16], [20], [23], the 
AGSolt framework has been configured using the algorithm 
parameters that were initially set by DynaMOSA [15]. To avoid 
unintended bias or distortion in our results, we consistently applied 
the same algorithm parameters across the experiment. Their exact 
configuration is outlined in Table 3. 

Table 3. Parameter settings for the proposed algorithm 

Parameter name Value
Population Size 50 

Coverage Criterion 
Branch 

Coverage 

Number of Accounts 10 

Number of Individuals in Binary Tournament 
Selection 

10 

Crossover Probability 0.75 

Mutation (Replace/Delete/Insert) Probability 0. 3333333 

Table 4. Group settings for LE-DynaMOSA 

Group No. Group size 
LED3 3 

LED6 6 

LED9 9 

LED12 12 

In the LE-DynaMOSA algorithm, selecting an appropriate 
group size is crucial to achieving high algorithmic efficiency. 
The precise configuration for group size is shown in Table 4. 

5.2. Experimental Results and Analyses for Smart Contract 

Test Case Generation 

5.2.1.Different Coverage Achieved for Each Smart Contract 
(RQ1) 

Table 5 shows the branch coverage performance of the 
DynaMOSA, PCA-DynaMOSA, and LE-DynaMOSA 
algorithms. In Table 5, the "-" indicates that there is no 
significant difference in the performance of the algorithm for 
a particular project. 

 
 

Figure 5. Number of projects with superior and inferior results in branch 

coverage

pp p j

426



Table 5. Mean branch coverage achieved for each smart contract 

Smart Contract 
Branch Coverage (%) PCA VS 

DynaMOSA 
(%) 

LE VS 
DynaMOSA 

(%) 

LE VS 
PCA 
(%) DYNAMOSA PCA-

DYNAMOSA 
LE-

DYNAMOSA 
BasicToken 100 100 100 - - - 

Casino 57.5 63.75 60 6.25 2.5 -3.75 

DosAuction 100 100 100 - - - 

EasyPayAndWithDraw 100 100 100 - - - 

EZCoin 100 100 100 - - - 

EtherBank 69.12 73.53 72.35 4.41 3.23 -1.18 

FixedSupplyToken 98.18 100 95.45 1.82 -2.73 -4.55 

FundRaising 100 100 100 - - - 

Greeter 99.84 98.46 98.46 -1.38 -1.38 - 

Greeter3 100 100 100 - - - 

GuardCheck 92.85 92.85 92.85 - - - 

Gift_1_ETH 74.44 84.44 77.78 10 3.34 -6.67 

GuessTheNumberChallenge 100 100 100 - - - 

IdentityManager 100 100 100 - - - 

LotteryFor10 100 100 100 - - - 

LotteryMultipleWinners 84.44 78.15 77.78 -6.29 -6.66 -0.37 

MyAdvancedToken 100 100 100 - - - 

OpenAddressLottery 100 100 100 - - - 

PullOverPush 100 100 100 - - - 

ProveIT 100 100 100 - - - 

PermissionGroups 94.84 95.45 96.97 0.61 2.13 1.52 

Rubixi 10.6 19.69 18.18 9.1 7.58 -1.52 

RICO 100 100 100 - - - 

Reentrance 86.42 94.29 92.86 7.86 6.43 -1.43 

SecureAuction 100 100 100 - - - 

tutorial-25 8.62 21.72 20.69 13.1 12.07 -1.03 

tutorial-26 4.22 32.54 22.54 28.32 18.32 -10 

VulnerableTwoStep 100 100 100 - - - 

Mean over all SC      85.04       87.67        86.64 2.64 1.60 -1.03 

 
Table 5 presents the branch coverage rates achieved by the 
DynaMOSA, PCA-DynaMOSA, and LE-DynaMOSA 
algorithms. It is discernible that both our proposed algorithms, 
PCA-DynaMOSA and LE-DynaMOSA, outperform the 
baseline DynaMOSA algorithm. On most of the smart 
contracts, these two improved algorithms yield similar or 
superior branch coverage results, albeit there are a few cases 
where the coverage rates decreased. On average, the PCA-
DynaMOSA algorithm enhances branch coverage by 2.64% 
compared to DynaMOSA, while the LE-DynaMOSA 
algorithm registers an average improvement of 1.60% on the 
smart contracts under test. 
Table 6. Number of smart contracts with Better and Worse results in branch 

coverage criteria 

Algorithm # of 
"Better" 

# of "Better" 
(%) 

# of 
"Worse" 

# of "Worse" 
(%) 

PCA 

vs. DynaMOSA 
9 32.14 2 7.14 

LE 

vs. DynaMOSA 
8 28.57 3 10.71 

PCA 

vs. LE 
9 32.14 1 3.57 

The superior performance of the proposed algorithms can be 
attributed to the challenges inherent to many-objective 
optimization, where discerning the relative merit of 
individuals becomes exceedingly difficult, even without the 
consideration of computational resources. Traditional 
algorithms such as non-dominated sorting can pose 
difficulties when applied to search in hyper-objective context. 
The dimensionality reduction algorithms address this issue by 

reducing the dimensionality of the test case generation problem 
space and constraining the number of objectives within a 
manageable limit. This, in turn, allows for a degree of optimization 
in the solution process. The effectiveness of the algorithms is 
statistically analyzed as shown in Table 6 and Figure 5. 
As evidenced by Table 6 and Figure 5, both the PCA-
DynaMOSA and LE-DynaMOSA algorithms exhibit 
improvements in branch coverage over the DynaMOSA 
algorithm. Specifically, The PCA-DynaMOSA algorithm 
shows superior performance in 32.14% of the cases and 
inferior performance in 7.14% of the cases. For the LE-
DynaMOSA algorithm, superior performance is seen in 
28.57% of the cases, and inferior performance in 10.71% of 
the cases. Moreover, PCA-DynaMOSA demonstrates 
superior performance compared to the LE-DynaMOSA, with 
superior performance in 32.14% of cases and inferior 
performance in 3.57% of cases. This is due to the 
dimensionality reduction of the LE algorithm, which 
primarily deals with the correlation between different 
coverage targets, combining different branches into inclusive 
or dependent relationships. This could potentially result in 
some objectives being difficult to cover, resulting in lower 
branch coverage rates. From the above analysis, it can be 
concluded that in the smart contracts test case generation 
problem, both dimensionality reduction strategies can show 
improved results in terms of branch coverage, with the PCA-
DynaMOSA algorithm delivering the better performance 
among the two without considering the time consumption. 
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Table 7. Comparison of time consumption 

Smart Contract 
Time Consumption (s) PCA VS 

DynaMOSA 
(s) 

LE VS 
DynaMOSA 

(s) 

LE VS 
PCA 

(s) DYNAMOSA PCA-
DYNAMOSA 

LE-
DYNAMOSA 

BasicToken 93.67 68.33 60.86 25.34 32.81 7.47 

Casino 5307.82 4729.1 4509.77 578.72 798.06 219.33 

DosAuction 70.05 51.86 52.89 18.19 17.16 -1.03 

EasyPayAndWithDraw 138.86 56 68.9 82.86 69.96 -12.9 

EZCoin 156.25 33.54 52.9 122.71 103.35 -19.36 

EtherBank 5968.44 5296.47 5209.78 671.97 758.65 86.69 

FixedSupplyToken 2179.91 1693.77 1590.54 486.14 589.38 103.23 

FundRaising 82.1 69.92 62.94 12.18 19.16 6.99 

Greeter 168.33 152.67 132.41 15.66 35.92 20.26 

Greeter3 138.54 127.2 118.95 11.33 19.59 8.25 

GuardCheck 1390.39 2867.57 2705.8 -1477.19 -1315.42 161.77 

Gift_1_ETH 659.95 637.33 611.31 22.62 48.64 26.02 

GuessTheNumberChallenge 57.87 52.86 57.11 5.02 0.77 -4.25 

IdentityManager 75.14 63.23 62.7 11.91 12.44 0.53 

LotteryFor10 75.47 61.47 61.05 14 14.43 0.43 

LotteryMultipleWinners 1005.42 925.33 895.8 80.09 109.62 29.52 

MyAdvancedToken 130.25 127.35 114.71 2.9 15.54 12.64 

OpenAddressLottery 69.6 61.32 57.42 8.28 12.18 3.9 

PullOverPush 160.52 150.4 134.8 10.12 25.72 15.6 

ProveIT 210.74 199.43 174.72 11.31 36.02 24.71 

PermissionGroups 6237.36 5992.43 5920.74 244.93 316.63 71.69 

Rubixi 602.72 593.46 567.61 9.26 35.11 25.85 

RICO 72.29 61.95 62.71 10.34 9.57 -0.76 

Reentrance 5647.86 5603.28 5438.9 44.57 208.96 164.38 

SecureAuction 58.79 58.21 54.7 0.58 4.09 3.51 

tutorial-25 630.75 824.17 795.82 -193.42 -165.07 28.35 

tutorial-26 783.86 926.06 854.21 -142.2 -70.35 71.85 

VulnerableTwoStep 76.03 63.97 59.71 12.06 16.31 4.26 

Mean over all SC 1151.75 1126.74 1088.92 25.01 62.83 37.82 

 

5.2.2.Search Performance and Time Consumption Achieved 
by the Algorithm (RQ2) 

The time consumption of the DynaMOSA, PCA-DynaMOSA, 
and LE-DynaMOSA algorithms is presented in Table 7. Table 
7 presents the time consumption of the DynaMOSA, PCA-
DynaMOSA, and LE-DynaMOSA algorithms for smart 
contract test case generation. As can be seen, both PCA-
DynaMOSA and LE-DynaMOSA, outperforms the 
DynaMOSA algorithm. These algorithms show similar or 
better time efficiency on most smart contracts, with a minor 
increase in time consumption in a few cases. LE-DynaMOSA 
consistently yielded the best results, whereas DynaMOSA 
was the least efficient. The PCA-DynaMOSA and LE-
DynaMOSA algorithms, on average, reduced time 
consumption by 25.01 and 62.83 seconds, respectively, 
compared to DynaMOSA across all tested smart contracts. 
This is because, after dimensionality reduction was performed 
on smart contracts with numerous objectives, the optimization 
process covered multiple objectives with a single test case. 
This resulted in a corresponding reduction in the final number 
of objectives, thereby increasing the time efficiency of test 
case generation. However, this also introduces certain 
drawbacks, such as the extra computational time required for 
the dimensionality reduction. Therefore, striking a balance 
between the pros and cons of dimensionality reduction algorithms 
is crucial in tackling this issue. A statistical analysis of the superior 
and inferior performance in time efficiency among different 
algorithms is illustrated in Table 8 and Figure 6. 

Table 8. Number of smart contracts with Better and Worse results in time 
consumption 

Algorithm # of 
"Better" 

# of "Better" 
(%) 

# of 
"Worse" 

# of "Worse" 
(%) 

PCA 

vs. DynaMOSA 
25 89.29 3 10.71 

LE 

vs. DynaMOSA 
25 89.29 3 10.71 

PCA 

vs. LE 
5 17.86 23 82.14 

As inferred from Table 8 and Figure 6, both the PCA-
DynaMOSA and LE-DynaMOSA algorithms exhibit 
significant time efficiency improvements. The PCA-
DynaMOSA algorithm shows superior performance in 
89.29% of the cases, and inferior in 10.71% of the cases, 
compare to DynaMOSA. The most prominent growth can be 
seen in the 'Casino' and 'EtherBank' smart contracts. For the 
LE-DynaMOSA algorithm, superior performance is seen in 
89.29% of the cases, and inferior performance in 10.71% of 
the cases, compare to DynaMOSA. Moreover, the LE-
DynaMOSA algorithm outperforms the PCA-DynaMOSA 
algorithm, with superior time efficiency in 82.14% of cases 
and inferior performance in 17.86% of cases. This could be 
attributed to the LE's approach to dimensionality reduction, 
which aims to consolidate similar objectives. In contrast, the 
number of objectives post-PCA reduction is determined by  
how much information can be preserved following reduction. 
The impact of reduction is less noticeable for smart contracts 
with fewer objectives, and the PCA reduction process is 
inherently more complex. 
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Figure 6. Number of projects with superior and inferior results in time 

consumption 

Based on our analysis, we find that both dimensionality 
reduction strategies, when applied to the test case generation 
problem for smart contracts, show enhanced time efficiency. 
Notably, LE-DynaMOSA yields superior results. Depending 
on needs, an appropriate dimensionality reduction algorithm 
can be selected. If higher test case coverage is desired, PCA-
DynaMOSA is recommended. Conversely, when balancing 
coverage and time efficiency, LE-DynaMOSA serves as the 
optimal choice, offering solid coverage while maintaining 
time efficiency.

5.2.3.Performance of Proposed Algorithm Under Different 
Group Settings (RQ 3) 

The method adopted in this section of the experiment involves 
dividing the objectives of smart contracts into groups. The group 
sizes are set to 3, 6, 9, and 12. The analysis is then carried out 
based on the average coverage rate. The experiment results are 
as follows. 
Table 9. Number of smart contracts with Better and Worse results in branch 

coverage and time consumption 

Group No. Group 
size 

Mean branch 
coverage 

Mean time 
consumption 

LED3 3 86.04 1165.91 

LED6 6 87.84 1074.87 
LED9 9 87.23 1097.82 

LED12 12 86.32 1121.57 

LE-DynaMOSA - 86.64 1088.92 

DynaMOSA - 85.04 1151.75 
As can be seen from Table 9, the grouping of the LE algorithm 
indeed influences the performance of the test case generation 
algorithm for smart contracts. If the grouping is too large or 
too small, it may not only fail to improve the results but may 
even decrease the efficiency of the algorithm. Thus, the choice 
of group size is a key issue. For instance, the search results of 
the LED3 and LED12 group algorithms show no significant 
improvement compared to the algorithm with no grouping. In 
some cases, their coverage rate is even lower, and the time 
consumption is relatively increased. This is because when the 
grouping is too small, the number of objectives before and 
after reduction changes little or not at all. The process of 
reduction increases time consumption and wastes 
computational resources. On the other hand, when the 
grouping is too large, there may be difficulties in convergence 
of the reduction algorithm for smart contracts with a vast 
number of objectives, which leads to increased time 
consumption. 
However, for most cases, when a reasonable group size is set, 
the LE algorithm can effectively enhance the coverage rate 

and time efficiency of test case generation for smart contracts. 
As shown in Table 9, both LED6 and LED9 show certain 
improvements compared to the DynaMOSA algorithm. But 
when comparing LED6 and LED9, the former increases the 
coverage rate by 0.61% and reduces the average time 
consumption by 22.95 seconds. Therefore, LED6 could be 
chosen as the final group number for the LE-DynaMOSA 
algorithm when considering these factors. Despite LED6 
showing optimal performance in this experiment, we must 
acknowledge, depending on the complex of the smart contract 
and the testing criterion chosen, the number of objectives in a 
smart contract test case generation problem can be varied. 
Therefore, realistic analysis and comparison are vital when 
selecting group size to effectively improve efficiency. 

6. CONCLUSION 

This paper presented new approaches to the challenge of 
automatically generating test cases for smart contracts in the 
context of excessive number of coverage objectives. More 
specifically, two dimensionality reduction strategies were 
utilized to reduce the objective space of the problem and to 
enhance the performance of the many-objective optimization 
algorithm for smart contract test case generation, namely, 
PCA and LE. The effectiveness of these algorithms was 
evaluated using 28 open-source Solidity smart contract 
projects from GitHub. Our results demonstrated noticeable 
improvements in both test case coverage and time efficiency 
when compared to the state-of-the-art DynaMOSA algorithm 
adapted in AGSolt framework. Specifically, PCA-
DynaMOSA and LE-DynaMOSA algorithms are on average 
notably higher in 32.14% and 28.57% of the classes under 
test for branch coverage, and boosted average branch 
coverage by 2.64% and 1.60%, respectively, over the 
DynaMOSA algorithm. Moreover, time consumption was 
reduced by an average of 25.01 seconds and 62.83 seconds 
for PCA-DynaMOSA and LE-DynaMOSA algorithms, 
respectively. When considering test case coverage, the PCA-
DynaMOSA algorithm was shown to be more effective. 
However, in terms of a balance between coverage and time 
efficiency, the LE-DynaMOSA algorithm was found to be the 
optimal choice. The grouping of objectives was found to 
influence the performance of the test case generation, with 
group size six providing the best results among the groups 
tested, demonstrating an increase in coverage rate by 0.61% 
and a decrease in average time consumption by 22.95 
seconds. Despite the promising results, some limitations 
should be noted. The impact of dimensionality reduction was 
less noticeable for smart contracts with fewer objectives, and 
PCA reduction is inherently more complex. Selecting the 
appropriate group size is crucial and highly dependent on the 
complexity of the smart contract and the testing criteria 
chosen. The future work of the study may include expanding 
the framework's support for the latest smart contract versions 
and developing a user-friendly GUI for improved usability, 
integrating dynamic symbolic execution for fine-grained test 
case searches and analyzing historical code fault to improve 
the framework's bug detection capabilities and combining 
test case selection and prioritization methods to enhance fault 
detection efficiency. 
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