
Automatic Generation of Solidity Test for Blockchain Smart Contract using Many
Objective Search and Dimensionality Reduction

Dongcheng Li1, W. Eric. Wong1,*, Sean Pan2, Liang-Seng Koh2, and Nicholas Chau1
1Department of Computer Science, University of Texas at Dallas, Richardson, Texas, USA

2RFCyber Corporation, Frisco, Texas, USA

*corresponding author

Abstract—Blockchain and smart contract technologies have

emerged as innovative approaches to trustworthy and reliable

service computing. With the growing popularity of

decentralized applications, the quantity of smart contracts has

seen an exponential increase. Research on testing smart

contracts has primarily focused on identifying specific

vulnerabilities in smart contracts and blockchains. However,

generating a robust test suite for smart contracts remains a

daunting challenge. The state-of-the-art DynaMOSA

algorithm uses many-objective optimization for test case

generation, introducing preference sorting and dynamic

target selection strategies. Yet, under hyper many-objective

conditions, the algorithm faces difficulties including

insufficient selection pressure and reduced efficiency. This

paper proposes a solution to these issues by introducing a

many-objective optimization algorithm with a dimensionality

reduction strategy. The goal is to condense an extensive

dataset into a smaller, more manageable and effective dataset

using specific reduction criteria. Additionally, this paper

utilizes 28 open-source Solidity projects from GitHub for

testing. The experimental results show that compared to

DynaMOSA, the proposed approach achieves higher testing

coverage on most projects under test and shows a noticeable

improvement in algorithm efficiency for the automatic

generation of Solidity Tests.

Keywords-automatic test case generation; many-objective
optimization; DynaMOSA; principal component analysis; laplacian
eigenmap

1. INTRODUCTION

Bitcoin whitepaper [1] signaled the inception of blockchain,
a decentralized distributed ledger enabling peer-to-peer
transactions without mutual trust. Ethereum, a leading public
blockchain platform, supports smart contracts [2] -
specialized programs that use the blockchain's consensus
mechanism to autonomously reach agreements. These
contracts, equivalent to written contracts with terms coded,
are reliably executed by the Ethereum Virtual Machine
(EVM) and their immutability ensures determinism.
Ethereum smart contracts, primarily written in Solidity, are
sets of code and data hosted on the Ethereum blockchain.
They can be triggered by either other smart contracts or users.
Each account has persistent storage and an Ether balance
adjusted by transactions [3]. Although Solidity smart
contracts seem similar to JavaScript or C programs in syntax,

their unique semantics can lead to unconventional reliability
and security issues. Developers often need to employ creative
strategies to express desired functions, which can introduce
vulnerabilities and bugs arising from discrepancies between
Solidity's semantics and the programmer's intentions [4].
Due to the popularity of Decentralized Applications
(DApps), the number of smart contracts has dramatically
increased. These contracts, involving significant digital
assets and immutable post-deployment, encounter more
stringent reliability and security demands than conventional
software [5]. Since 2016, various security incidents have
uncovered diverse vulnerabilities in smart contracts, resulting
in considerable financial losses. Notable incidents include the
Decentralized Autonomous Organization (DAO)'s hacking in
2016, Ethereum's Parity wallet bug in 2017, and the
BeautyChain (BEC) attack in 2018 [6]. Given these severe
repercussions, ensuring the reliability and dependability of
smart contracts has become a pressing concern.
Luu et al. [7] and Atzei et al. [8] have identified design flaws
in published smart contracts. Zou et al. [9] further validated
that many developers desire tools to ensure smart contract
code correctness. This highlights the urgency of preventing
smart contract bugs and vulnerabilities through robust testing
before deployment. To date, research on testing smart
contracts is primarily focused on identifying known
vulnerabilities [10] and test case creation is often done
manually. However, this approach is labor-intensive, time-
consuming, and heavily relies on the skills and experience of
smart contract developers, considering the growing quantity
and complexity of smart contracts. Therefore, the automatic
generation of efficient and reliable test cases to detect bugs
and vulnerabilities in smart contracts is vital [11]. The lack
of effective automatic test suites generator is a significant
obstacle to transitioning technologies from academia to
industry, making the automatic generation of test suites a
critical research area at present [12].
This paper reframes the problem of automatic test case
generation for smart contracts as a many-objective
optimization problem. We decompose a smart contract into
multiple branches, treat each as an optimization goal, and by
optimizing program branch coverage, we search for optimal
test cases. To overcome the shortcomings of existing
frameworks, we propose a many-objective test case
generation algorithm using dimensionality reduction
strategies, namely, principal component analysis (PCA) and
Laplacian Eigenmap (LE). This approach reduces numerous
test case generation objectives to a few essential ones,
thereby generating test cases with high coverage and

418

2023 10th International Conference on Dependable Systems and Their Applications (DSA)

2767-6684/23/$31.00 ©2023 IEEE
DOI 10.1109/DSA59317.2023.00057

improving test case generation efficiency. The approach's
effectiveness is measured by the branch coverage and
execution time of the generated tests, and its superiority and
feasibility are validated with 28 open-source Solidity smart
contract projects collected from GitHub.
The remainder of the paper is organized as follows. Section
2 presents related studies; Section 3 introduces the smart
contract test case generation problem as a many-objective
optimization problem; Section 4 describes the proposed
many-objective search algorithm with dimensionality
reduction for the automatic generation of Solidity tests of
Smart Contracts; and Section 5 describes the experimental
setup and analyzes the results. Finally, Section 6 presents the
conclusions.

2. RELATED STUDIES

From the previous century onwards, a multitude of research
has been conducted on automatic test case generation by
scholars around the world. Numerous methodologies for the
automated generation of test cases have been proposed [13].
Notably, the automatic test case generation technique rooted
in heuristic search algorithms has achieved substantial
progress. In essence, the challenge of test case generation
presents itself as a multi-objective problem. The process of
program data flow execution can be visualized through a
control flow graph, with each statement block representing
an objective. The aim is to generate test cases that cover these
objectives, with the evaluation of fitness calculations being
determined based on various testing coverage criteria, for
example, line, branch, and mutation coverage. Inspired by
biological evolution, genetic algorithms operate with a set of
(candidate) solutions or chromosomes. They employ iterative
applications of evaluation, selection, crossover, and mutation
to yield the subsequent generation of optimal solutions [14].
DynaMOSA (Many-objective Sorting Algorithm with
Dynamic target selection) [15] is a state-of-the-art algorithm
purpose-built for automated test case generation. Its
methodology employs the principles of NSGA-II-inspired
multi-objective optimization, facilitating the production of
compact, efficient, and high-coverage test suites [16].
Empirical evidence illustrates DynaMOSA's significant
superiority over alternative test case generation algorithms,
especially concerning branch and mutation coverage across a
diverse range of Java class projects [17], [18]. In EvoSuite
[19], basic static analysis is initially used to extract
information regarding classes and their constructors,
methods, and fields. Bytecode is then inserted when the Java
class loader loads the classes. Ultimately, the meta-heuristic
search algorithm (DynaMOSA) [20] is employed to
automatically generate JUnit test cases aimed at maximizing
code coverage.
Fraser et al. [17] introduced the concept of Whole Suite (WS)
optimization within the EvoSuite framework, marking the
first application of many-objective optimization to test case
generation. This approach strives to cover all objectives
simultaneously with the entire test suite while minimizing its
total size. Fraser's work demonstrated superior results
compared to those targeting single objectives. Sahin et al.
[21] developed an archive-based, multi-criterion Artificial

Bee Colony (ABC) algorithm for test suite generation. This
algorithm maximizes the fitness functions of various
objectives for object-oriented software. The Archive-Based
Artificial Bee Colony algorithm (ABC) retains covered
objectives in an archive to effectively utilize available search
resources. The feasibility and effectiveness of the algorithm
were verified through experiments. The introduction of an
archive into the ABC algorithm leads to faster convergence
speed than the basic ABC algorithm and achieves a higher
coverage rate.
Panichella et al. [20] introduced an enhanced multi-objective
genetic algorithm, known as Many-objective Sorting
Algorithm (MOSA), building upon the test suite concept. The
fundamental premise involved an initial preference sorting to
select optimal individuals, followed by a fast non-dominated
sort for the remaining candidates. These individuals then
underwent genetic operations like selection, crossover, and
mutation. Nevertheless, in automatic test case generation, the
principal challenge was the decrease in efficiency brought
about by the overwhelming number of objectives. To address
this, Panichella et al. proposed the dynamic target selection
strategy known as DynaMOSA [15] to bolster the algorithm's
search performance. The key idea centered on examining
coverage targets that held a dominant position via a control
dependency graph. The approach entailed dynamic target
selection to reduce the number of objectives per algorithm
search, consequently improving test case search
performance.
 To achieve higher test case coverage, Panichella et al. [15]
proposed a multi-criterion coverage strategy based on the
DynaMOSA algorithm. This primarily involved handling
objectives such as branch, line, and mutation coverage
simultaneously. Following this, to integrate non-functional
metrics into test case generation, Panichella and his team
presented an adaptive approach, termed ADynaMOSA
(Adaptive Many-Objective Sorting Algorithm with Dynamic
Target Selection) [22]. This approach factored the test case
execution time and memory usage into the algorithm's
optimization objectives. The result was a maintained
performance while generating test cases with high coverage.
However, for many-objective multi-criteria test case
generation problems, there exist dozens or even hundreds of
covering objectives in each class under test, which poses a
significant challenge to the algorithm’s search performance
and scalability.
Aiming at alleviating the above-mentioned issue, Li et al.
[23] proposed PCA-DynaMOSA algorithm for Java program,
addressing its inefficiencies in scenarios with a large number
of objectives. It is utilizing the dimensionality reduction
technique for a set of optimization objectives or fitness
matrixes, transforming original objective space data into a
new smaller space, where dimensions represent objectives. It
can generate high-coverage test cases within a constrained
timeframe. It was tested on 49 projects from the SF110
benchmarking dataset, demonstrating superiority over
DynaMOSA in line, branch, mutation, multi-criteria
coverage, and search efficiency.
Although search-based test case generation methods can
effectively produce relatively comprehensive test suites, they

419

still fall short when it comes to generating test cases for inputs
with complex structures. Dynamic Symbolic Execution
(DSE) [24], [25] can achieve high code coverage by
executing programs concretely, collecting symbolic
conditions, and solving constraint systems. To mitigate the c
challenges, it is worth considering a fusion of symbolic
execution and heuristic search [26]. Galeotti et al. [27]
expanded the genetic algorithm (GA) in the EvoSuite unit test
generator by integrating DSE into an adaptive approach. In
this system, feedback from the search process determines
when DSE was the appropriate solution to use for a search.
Experimental findings indicated that this hybrid approach
provided improvements over its individual constituent
techniques alone, GA and DSE.
Li et al. [28] proposed an innovative local search algorithm
that unites adaptive simulated annealing and symbolic path
constraints to optimize the neighborhood search of ideal
solutions. This approach was designed to address limitations
associated with both global search methods and local search
strategies using the alternating variable method. The adaptive
simulated annealing algorithm was introduced to effectively
explore parameters of each statement and avoid local optimal
solutions. The symbolic path constraints were utilized to
navigate constraints encountered during test case execution,
ensuring high code coverage. The research team
demonstrated an effective balance between resource
consumption for global and local search. They compared
their algorithm with leading test case generation algorithm,
using the SF110 open-source benchmarking datasets to
demonstrate its efficacy.
Furthermore, some researchers have combined machine
learning and search-based methods to enhance the efficiency
of test case generation. Modonato [29] proposed Tardis, a
unit test generator for Java programs, which integrates
dynamic symbolic execution, search-based testing, and
machine learning to efficiently generate comprehensive
class-level test suite. Tardis employs the following
approaches: (1) It explores the path space of the target
program using dynamic symbolic execution; (2) It
instantiates complete test cases using genetic search
algorithms; and (3) It applies a priority ranking to symbolic
formulas that are more likely to correspond to feasible
program paths, utilizing a primitive classification algorithm.
Currently, there are two main frameworks for generating test
cases for smart contracts. The first is AGSolt [30], designed
specifically for generating test cases for smart contracts with
the intention of achieving high branch coverage in Solidity
smart contract unit testing. Utilizing both random testing and
the DynaMOSA algorithm, AGSolt has managed to attain
substantial branch coverage. Empirical evidence indicates
that, in terms of branch coverage, DynaMOSA outperforms
the fuzzer. Despite lacking additional selection, crossover,
and mutation operations, the fuzzer does not exhibit greater
speed compared to search-based test case generation. This
might be attributed to the fact that DynaMOSA's preference
sorting and dynamic selection of coverage objectives
techniques that minimizes the time spent on searching for
optimal test suite.

The second framework, SynTest-Solidity [31], was put
forward by Mitchell et al. It features a command-line
interface (CLI), which simplifies testing during the
development process and enables developers to modify
various parameters related to the test case generation process.
Additionally, SynTest-Solidity offers an online web service
that allows developers to utilize the tool without needing
local installation or configuration. It serves as an automatic
test case generation and fuzzing framework for Solidity,
encompassing various meta-heuristic search algorithms, such
as random search (traditional fuzzing) and genetic algorithms
(i.e., NSGA-II, MOSA, and DynaMOSA). In generating test
cases for 20 real-world Solidity smart contracts, SynTest-
Solidity has demonstrated its effectiveness by achieving an
average branch coverage of 61%, thereby validating its utility
in testing Solidity smart contracts.

3. AUTOMATIC TEST-CASE GENERATION PROBLEM FOR

SOLIDITY SMART CONTRACTS

The central issue addressed in this paper is the automatic
generation of test cases, specifically for smart contracts. The
goal is to define a test suite that includes multiple test cases
for all methods in the contracts under test, where each test
case could differ in terms of the quantity and type of test
statements included. Two critical considerations underscore
this process. Firstly, it is essential to minimize the number of
test case statements as lengthy test cases not only increase
manual costs but often lead to redundancy in the statement
function. This can be mitigated by simplifying
interdependent conditional relationships, which consequently
shortens the testing cycle, making it preferable to have fewer
statements in a test case. Secondly, the target coverage rate
needs to be maximized for automatic white-box test case
generation. In this context, the concept of coverage criteria is
used to evaluate the sufficiency of the current test case for
testing the contract under test. Common coverage criteria for
traditional programs include line, branch, and mutation
coverage, each offering a unique perspective for verifying
test adequacy. Studies suggest that a higher testing coverage
results in more comprehensive testing of the program under
test with the generated test cases [32].
In this section, we analyze and describe the problem of the
automatic generation of test cases for smart contracts,
reframing it as a many-objective optimization problem. We
then describe the search-based test case generation
framework, including its comprehensive design, coding
architecture, genetic operations, and fundamental algorithmic
process, laying the groundwork for subsequent algorithm
improvements.

3.1. Control Flow and Control Dependency Graph

A Control Flow Graph (CFG) depicts the execution process of
a program [33]. It can be represented as

. Where, Node denotes the set of block
statement nodes, corresponding to bytecode instructions after
the smart contract is compiled. Based on different standards,
a node could represent a single line of code, multiple lines of
statements, or branches. Edge symbolizes the intermediary
paths between nodes, which could comprise a single line or

420

multiple lines of statements. However, unlike Node, an Edge
does not physically exist within the code but is an abstract
concept that illustrates the flow of data between bytecodes.
start refers to the entry node of the Control Flow Graph (i.e.,
the program under test), and end corresponds to the exit node
of the Control Flow Graph.
The Control Flow Graph (CFG) of a smart contract, obtained
from its source code and serving as an intermediate
representation, has the following characteristics: (1) It
maintains the three structures found in traditional language
CFGs: sequence, selection, and loop. (2) Each node in the
CFG represents a single valid statement rather than a block of
statements. Based on these attributes, the following rules to
construct the CFG is defined: each functional structure in the
smart contract has its unique CFG (i.e., a sub-CFG). The
'require' statement is treated as a selection structure, and for
'switch' structures, each 'case' is regarded as a selection
condition.
While a CFG can provide a comprehensive overview of a
program's execution process, certain edges in the CFG can
introduce unnecessary nodes, which could lead to inefficient
use of resources, as search operations may be wasted on them
[34]. To address this inefficiency, the COMPACIFYCFG
algorithm, proposed in [30], utilizes the COMPACIFY
process to effectively eliminate these redundant nodes. After
establishing the control dependency relationships among
nodes, a control dependency graph can be extracted from the
control flow graph.

3.2. Test Cases and Test Suite

A test case is a sequence of calls targeted at one or more
methods within a smart contract, whereas a test suite refers to
a collection of test cases formed for the entire smart contract.
A test suite can be represented as ,
where each test case can consist of multiple method call
sequences, represented as

. The critical aspect of the test
case optimization problem is the generation of these test cases,
particularly the creation of sequences for method calls. As
such, it's essential to extract the methods from the smart
contract and establish the input and output types, values, and
call sequences for each one.
In the test case generation problem, the process begins by
identifying the target function of the program under test.
Subsequently, the input and output values of various methods
are continuously optimized until a particular condition is
met—namely, finding the optimal solution for the conditions
of the target function. For generating test cases for smart
contracts, all branches of the program under test are first
extracted to form a target set. This set is then treated as a
constraint system, which is ultimately converted into a target
function until an optimal solution set is found. In single-
objective search, a test case is generated for each target.
However, many-objective test case generation, unlike single-
objective search, can optimize multiple targets
simultaneously. That is, the final generated test case may
cover multiple targets. The generated test cases are then
combined to form the final test suite. This approach enables

the goal of generating many test case coverage targets while
minimizing the number of test statements.

3.3. Coverage Criteria

Coverage criteria serve as a crucial benchmark for assessing
the adequacy of software testing. Branch coverage, which
involves executing all possible outcomes of each branch,
ensures that all code branches of the program under test are
covered. Compared to other test case coverage criteria (e.g.,
Statement, Mutation coverahe), branch coverage can detect
the correctness of branch conditions in the code under test in
a relatively shorter time, thereby improving testing efficiency.
Therefore, this paper adopts branch coverage as the evaluation
criterion for test cases.
The branch coverage criterion requires that, in the generated
test suite, every "TRUE" and "FALSE" branch result of each
decision statement in the program under test should be
executed at least once. The coverage rate of a specific branch
in a test case can be represented by the following function:

 (1)
The definition of branch distance is as follows:

 if branch has been covered

 if current branch has been excuted twice

 other

(2)

accDist: This stands for 'approach distance', which is the
distance from the actual branch executed in the test case to
the target branch, that is, the number of control dependencies
between two branch nodes in the control flow graph.

3.4. Many-objective Test Case Generation

In practical applications, many-objective optimization is a
universal challenge spanning across all disciplines. These
objectives are intrinsically conflicting and subjected to a
variety of constraints [35]. Notably, it is implausible to
achieve optimal outcomes for all objectives at once; each
objective requires individual weighting. A many-objective
optimization problem consists of three or more objective
functions and a set of related equality and inequality
constraints [31]. This concept can be mathematically
described as follows:

 (3)

In the above equation, {i=1,2,3,…,m} represents
the objective function, and represent the
constraint functions, is the n-
dimensional decision variable.

 represents the

feasible domain for the above equation.
In this many-objective optimization problem, there are

 objective functions, minimization objective

functions maximization objective function, and

421

 constraint functions, including inequality
constraints and equality constraints.
In practical engineering design, the decision variables

are designated and controlled by the user, the
objective function is used to evaluate system performance, the
constraints represent the limits that the decision variables must
meet, and the goal is to optimize these performance indicators.
A feasible solution is a set of design variables that satisfy all
constraint conditions, and the feasible domain can be defined
as the collection of all feasible solutions.

 (4)

This can also be expressed as:
 (5)

3.5. Encoding Design

In the context of test case generation, a test case is used as a
chromosome. The encoding represents individuals as input
sequences, each comprising an environment block and a
transaction block, both of which are encoded as key-value
mappings. The environment includes block information, such
as current timestamp and block number, return values of calls,
data size, and external code size, etc. The transaction
comprises the address of the sending account (from),
transaction amount (value), maximum gas amount for contract
execution (gas limit), and the input data for contract execution
(data). The input data is represented as a value array, where
the first element is always the function selector, and the
remaining elements represent function parameters. The
function selector is calculated using the Application Binary
Interface (ABI) and extracts the first four bytes of the Keccak
(SHA-3) hash of the function signature. The individual
encoding method in the test case generation problem is shown
in Figure 1.

Figure 1. Encoding design

3.6. Population initialization

After extracting the required information, the test case
population is initialized randomly with a fuzzing approach.
Each test case compose of various statement, and can be
represented as

 Those statements can be
categorized into two types. The first type is the construction
statement, which is used to deploy smart contracts on the
blockchain. Such a statement serves as the first statement

for every test case , ensuring each test case that
can call function statements instantiates a new instance of a

smart contract. This type of statement contains the
information necessary for deploying relevant smart contract
instances on the blockchain, including the input variables
required by the smart contract constructor and transaction
metadata, such as the amount of Ether sent with the
transaction and the account sending the transaction. The
second type is the function statement, which is used to create
transactions that call functions within the deployed smart
contracts. In fact, the only way to interact with smart contracts
in Ethereum is to send transactions to their addresses. In the
test cases, all statements apart from the first one (i.e., the
construction function statement) are function statements
responsible for traversing the branches of the smart contracts.
This type of statement contains references to the function to
be covered, its input variables, and transaction metadata. A
group of test cases is initialized by creating N random test
cases, where N is the population size, i.e., the number of test
cases in any given generation.

3.7. Search Operations

The search operations of the genetic algorithm primarily
include selection, crossover, and mutation [36]. This
replicates the biological evolution process of "survival of the
fittest," aiming to guide the population's evolution towards
superior genes, thereby achieving an optimal solution.

3.7.1.Selection Operation

The core idea of the selection operator is to select two
individuals from the current population as parents, who then
generate the next generation of the population following
certain rules. During the evolutionary process, it is generally
believed that individuals with higher fitness values are more
suitable as parents. However, this poses a risk of losing other
genes, leading to population convergence around a solution
and falling into local optima. Therefore, preserving excellent
genes, maintaining population diversity, and improving
genetic efficiency are all equally important.
Based on the idea of a tournament, during each evolution, a
certain number of individuals are randomly selected from the
parents, and the one with the highest fitness is chosen for the
genetic operation. This process is repeated until the size of
the child population is the same as the parent population. This
method greatly maintains population diversity. Therefore, the
selection operator based on the tournament to ensure
population diversity and convergence is used for the smart
contract test case generation problem.

3.7.2.Crossover Operation

The crossover operator involves performing a crossover
operation on two individuals selected from the parent
population. First, a crossover point is determined, and then the
gene strings are swapped at the crossover point while
maintaining the rest of the positions unchanged, thus
generating two new individuals. Single-point crossover entails
pairing individuals in the population, selecting an arbitrary
position in the individual's encoding string as the crossover
point, and swapping the subsequent gene strings based on this
point, with other positions remaining unchanged. This can
produce two new individuals. This is shown in Figure 2.

422

Figure 2. Single-point crossover

Single-point crossover requires less computational effort
compared to other crossover operations. For large-scale
problems, it can search the solution space faster, and single-
point crossover can preserve more parent information in two
individuals. It effectively inherits superior genetic
information and accelerates convergence. Therefore, the
single-point crossover is used for the smart contract test case
generation problem.

3.7.3.Mutation Operation

Mutation involves modifying some encodings on the gene
positions of the current chromosome (individual) to form a
new individual. It introduces randomness to discover
unexplored regions in the search space, thereby enhancing the
algorithm's global search capability. To ensure the uniformity
of individual mutation, three mutation operations, including
insertion, modification, and deletion of the statements
contained in the test case, each with a 1/3 probability, is used
for the smart contract test case generation problem.

� Deletion: Each statement of a test case of length S is

deleted with a probability of 1/S, ensuring that the test

case can still run normally after deletion.

� Modification: Each statement of a test case of length S is

modified with a probability of 1/S. Different variable

types have different value ranges and modification

methods. Value generation includes two methods:

random and mutation pool value extraction.

� Insertion: Unlike deletion and modification operations,

this step requires generating method calls according to the

environment and method, followed by insertion.

3.8. Test Case Generation Framework

The test case generation framework used in this paper, as
shown in Figure 3, is based on [30], and is primarily divided
into two main parts: initialization module and test loop
module. During the initialization phase, the characteristics of
the smart contract (program under test) are extracted to create
the first generation of test cases, setting the stage for further
improvement during the test loop.
Within this framework, the input consists of a smart contract
written in Solidity language, which is a combination of code
and data residing at a specific address on the Ethereum
blockchain. This is followed by the ABI (Application Binary
Interface) Analysis wherein the Solidity code is compiled into
bytecode, and an ABI file is created that contains vital
information such as function names and input types necessary
for test case generation, capturing also the hard-coded values
of the contract. Next, to track the branches to be traversed and
those already covered, CFG Extraction is performed using the
Python EVM-CFG-BUILDER library to extract the control
dependencies from the bytecode, with each branch node's
opcode identified for branch distance calculations.
Subsequently, COMPACIFY [30] algorithm is executed on
redundant nodes to eliminate them, aiming at budget reduction
in the CDG Generation phase.

Figure 3. The overall framework
During the test loop, an exhaustive search for the best test case
is conducted until the budget is expended. This loop can be
broken down into two parts, starting with the algorithm
module that utilizes integrated algorithms such as
DynaMOSA, PCA-DynaMOSA, and LE-DynaMOSA. These
algorithms, all based on the genetic principle and inspired by
biological evolution, work together to obtain comprehensive
test cases through iterative application of evaluation,
selection, crossover, and mutation. The result archive module
then follows, wherein each test case is run on the Ethereum
blockchain, beginning with a constructor statement. After
executing and evaluating all test cases to generate a distance
vector for fitness description, the normalized branch distances
are updated, and all traversed edges and uncovered branches
are calculated. Finally, if a test case excels over the best one
found so far for a particular branch, it is stored in an archive
that systematically tracks the best test case for each branch,
culminating in a return at the end of the process, thereby
reflecting the framework's methodical approach to test case
generation.

4. UTILIZING MANY-OBJECTIVE SEARCH AND

DIMENSIONALITY REDUCTION IN THE AUTO-GENERATION OF

SOLIDITY TESTS FOR BLOCKCHAIN SMART CONTRACTS

DynaMOSA [15], proposed by Panichella, is one of the most
popular many-objective test case generation algorithms, it
has been used to generate efficient test cases for variety of
systems and programing languages [18], [20], [23]. It
incorporates strategies such as archiving, dynamic selection
of objectives and preference sorting based on the foundation
of NSGA-II. On one hand, the preference sorting function
determines the test case with the lowest objective score (e.g.,
branch distance + approach level for branch coverage) for
each uncovered target. And assign all these test cases to rank
0, in other words, give them a higher chance of surviving into

423

the next generation. On another hand, the dynamic selection
of objectives uses the control dependency graph to derive
which targets are independent of any others (that is the targets
that are free of control dependencies) and which ones can be
covered only after satisfying previous targets in the graph,
and selects only those targets that are free of control
dependencies as the initial set of objectives.
Despite the substantial progress that existing multi- and
many-objective optimization algorithms have made in
solving automatic test case generation problems, they still
face considerable challenges. Most notably, these algorithms
often experience a significant decrease in performance when
applied to large-scale many-objective optimization problems.
This issue necessitates the exploration of strategies to reduce
the dimensionality of the objectives, as such a reduction
could potentially enhance the performance of the test case
generators.
Dimensionality reduction refers to the process of
transforming high-dimensional data into lower-dimensional
data based on certain criteria. It can decrease computational
requirements and enhance the search efficiency of the
algorithm by eliminating redundant objectives. Therefore, it
can be utilized to address hyper-many-objective optimization
problems. In the context of test case generation, strategies
like preference sorting and dynamic selection of objectives,
deployed in the DynaMOSA algorithm can help alleviate
issues associated with a high number of objectives to some
extent. However, this solution remains insufficient when
generating effective test cases for complex modern software
programs, with tens, and sometimes even hundreds, of coverage
objectives (branches) in a single class.
Hence, in this paper, we propose a solution to the
performance degradation of the DynaMOSA algorithm in
large-scale many-objective optimization problems by
incorporating dimensionality reduction algorithms in smart
contract test case generation. Our primary objective is to
reduce the dimensionality of the objective space in the test
case generation problems, filtering out redundant and invalid
feature information. Then, carry out many-objective sorting
on population individuals using the reduced objective set.
Moreover, the application of dimensionality reduction for test
case generation problem is primarily justified by three
considerations: first, the inherently vast quantity of objectives
within the problem; second, the potential for a single test case
to encompass multiple objectives; and third, the presence of
correlations amongst different coverage objectives.

4.1. PCA for Smart Contract Test Case Generation

Principal Component Analysis (PCA) [37] is a statistical
technique that uses orthogonal transformation to convert a set
of observations of potentially correlated variables into a set of
values of linearly uncorrelated variables. Moreover, PCA
serves as a tool to reduce multi-dimensional data to a lower
dimension while retaining most of the information. It
incorporates standard deviation, covariance, and eigenvectors.
The main steps in PCA are as follows:

� Column vectors and row vectors of size represent a

collection of objectives () of size .

� The average value of the objective μ is described as:

 (6)

� Each objective has a different average value:
 (7)

� The covariance matrix is calculated as follows:
 (8)

 Where .

� Compute the covariance matrix 's eigenvectors and

eigenvalues .

� Form a new matrix from the first k eigenvectors

corresponding to the largest eigenvalues.

� Project the sample points onto the chosen eigenvectors to

obtain the result.

The principal advantage of Principal Component Analysis
(PCA) is its low sensitivity to noise, along with its reduced
requirements for storage capacity and memory. Furthermore,
it enhances efficiency due to the dimensionality reduction of
the data during the processing. The benefits of PCA
encompass three main points: firstly, there is no redundancy
in data represented by orthogonal components; secondly, it
lessens the complexity of the objectives; and thirdly, PCA
effectively minimizes noise by selecting the basis associated
with the largest variances, while smaller changes are
automatically disregarded [37].

While PCA brings certain benefits, it's not without its
limitations. One notable drawback is that the process of
dimensionality reduction can be computationally demanding,
consuming a significant portion of the system's resources.
Additionally, accurately calculating the covariance matrix, a
crucial step in PCA, can pose a challenge [37]. Finally, PCA
often struggles to capture invariant features in the data, which
could limit its effectiveness in some applications. Therefore,
to minimize the computational time, this paper also employs
the Laplacian Eigenmap (LE) method for dimensionality
reduction, in addition to PCA.

4.2. LE for Smart Contract Test Case Generation

Laplacian Eigenmap (LE) [38] is an unsupervised nonlinear
finite element analysis technique that seeks low-dimensional
data while preserving the "local properties" of the manifold.
Initially, LE generates a neighborhood graph G', where each
datum is linked to its nearest neighborhood. All and in
G' are connected by an edge, and the Gaussian kernel function is
employed, where the weight of the edge is assessed as:

 (9)
where specifies the variance of the Gaussian function
leading to the adjacency matrix (W). To reduce the
dimensions from X to Y, the cost function defined by LE is
minimized as:

 (10)
Optimizing the cost function implies that the distance between

 and in the high-dimensional space is smaller, and
consequently, the distance between and in the low-
dimensional space is also smaller. Furthermore, by calculating
the diagonal matrix D and the Laplacian matrix L of G', the
cost function in the above equation can be rephrased as an
eigenvalue decomposition problem, as follows:

424

 (11)
where L can be defined as L = W - D; D is a diagonal matrix
with elements being the row sum of W, like = , and
the elements of W represent whether a pair of vertices are
adjacent; the elements of W are either 1 or 0, where diagonal
elements are 0. Hence, the aim is to make subject to
minimizing .
The main steps of LE are as follows:

� Construct a neighborhood graph using the adjacency

matrix.

� Calculate the weight of each edge of the adjacency graph.

� Obtain the new space by eigen-decomposition through

optimizing the cost function.

In the context of test case generation, the LE algorithm is
introduced not only to reduce the dimensionality of the
objective set-in test case generation problems but also for
comparison with the PCA algorithm. We consider the relative
strengths and weaknesses of the algorithms in terms of branch
coverage and time efficiency. This enables the appropriate
algorithm to be selected according to the actual situation in
real-world scenarios.

Algorithm 1: Improved Multi-objective Test Case Generation Algorithm
Based on Dynamic Grouping and Dimensionality Reduction Strategy

Input
 : Set of objectives

Output
 Test suite

Algorithmic Process
1 Procedure
2 = Select targets in with not control dependencies
3
4 Create initial population :
5 archive = UPDATE_ARCHIVE()
6 UPDATE_TARGETS(//Update objectives

based on the control dependency graph and objective
correspondence

7 while TERMINATION_CONDITION is not met do
8 = group() //Group objectives by a certain number
9 [i]= PCA() || [i]= LE() //Perform

dimensionality reduction on the grouped objectives separately
10 = SORT [i]) //Combine the reduced objectives
11 PREFERENCE_SORT() //Perform preference sorting
12 CROWED_SORT() //Perform crowding distance

sorting
13 end while
14 T = archive //Return the final archive as the optimal test case set
15 end Procedure

4.3. Algorithmic Process for Test Case Generation based on

Dynamic Grouping and Dimensionality Reduction

Strategy

As inferred from the analysis of dimensionality reduction
algorithms, the process of reducing the objectives will also
entail additional computational time. If the number of
objectives in the test case generation problem is large, the
computational process of the dimensionality reduction
algorithm will accordingly be more complex. This could lead
to issues such as lengthy computation time and difficulties in
convergence. Therefore, it can be considered to reduce the
dimension of the objectives in a dynamically grouped manner:
group the objectives by a certain number, carry out
dimensionality reduction separately, and then integrate the

reduced objectives to obtain the final objective set. The
pseudocode for the improved many-objective test case
generation algorithm based on dynamic grouping and
dimensionality reduction strategy is shown in Algorithm 1.

Naturally, within the grouping strategy, the group size is hard
to determine in advance, given its impact on the algorithm's
performance. The appropriate group size needs to be chosen
empirically, based on the number of objectives and through
experimentation in real-world situations. This paper intends to
conduct experiments with varying group sizes to determine an
empirical value. The flowchart for the test case generation
algorithm of DynaMOSA, based on dynamic grouping and
dimensionality reduction strategies, is shown in Figure 4.

Figure 4. Flowchart of test case generation algorithm based on dynamic

grouping and dimensionality reduction strategy

5. EXPERIMENTAL DESIGN AND RESULT ANALYSIS

In this section, we will conduct experiments using our
proposed algorithms, and compare their performance with that
of DynaMOSA, the state-of-the-art many-objective test case
generation algorithm implemented in AGSolt [30]. We have
named our novel many-objective test case generation
algorithms using PCA and LE as PCA-DynaMOSA and LE-
DynaMOSA, respectively.
The experiments designed and conducted in this study were
primarily aimed at answering the following research
questions (RQs) for many-objective test case generation of
smart contracts:

y g g

425

� RQ 1: When considering branch coverage during the

generation of test cases for smart contracts, how does the

performance of the PCA-DynaMOSA and LE-

DynaMOSA algorithms compare to both the

DynaMOSA algorithm and each other?

� RQ 2: Regarding search efficiency during the test case

generation process, how do the PCA-DynaMOSA and

LE-DynaMOSA algorithms stack up against the

DynaMOSA algorithm, as well as against each other?

� RQ 3: Under the dimensionality reduction strategy, to

what extent does the grouping size affect the test

coverage rate and search efficiency? Moreover, how can

insights gleaned from the experimental results guide the

choice of grouping size in practical scenarios?

5.1. Experimental Design

5.1.1.Evaluation Metrics

To benchmark the efficacy of our proposed algorithms in
generating smart contract test cases, we leverage a set of
evaluation metrics. These metrics are applied during
experimental testing and are crucial in facilitating a
comprehensive comparative analysis of the performance of
different algorithms.
Testing coverage: The coverage rate evaluates the
sufficiency of test cases generated by the algorithm for smart
contract under test. We choose branch coverage as the
evaluation criterion, and it can be calculated using the
formula below:

 (12)

Execution Time: Execution time mainly includes the total time of
the algorithm and the average total time, represented as follows:

 (13)

5.1.2.Experimental Setup

The primary focus of this study is to improve and optimize
the state-of-the-art algorithm, DynaMOSA [15] in AGSolt
[30], for smart contract test case generation. The current
framework, written in Python, operates within the Ubuntu
system. The detailed specifications of the experimental test
platform are presented in Table 1.

Table 1. Experimental environment

Hardware Intel(R) Core(TM) i9-10900F CPU @ 2.80GHz

Software
Ubuntu 22.04

Python 3.9

Solidity 0.4.9

Table 2. List of smart contracts under test

Smarta Contract # of
Branches Smarta Contract # of

Branches
BasicToken 8 LotteryFor10 12

Casino 11 LotteryMultipleWinners 27

DosAuction 7 MyAdvancedToken 3

EasyPayAndWithDraw 8 OpenAddressLottery 19

EZCoin 11 PullOverPush 7

EtherBank 17 ProveIT 5

FixedSupplyToken 22 PermissionGroups 66

FundRaising 21 Rubixi 66

Greeter 65 RICO 13

Greeter3 57 Reentrance 14

GuardCheck 14 SecureAuction 6

Gift_1_ETH 18 tutorial-25 58

GuessTheNumberChallenge 8 tutorial-26 71

IdentityManager 7 VulnerableTwoStep 10

5.1.3.Datasets

The experimental data primarily comprises some of the most
popular Solidity smart contract projects available on GitHub.
As illustrated in Table 2, among these twenty-eight projects,
the smallest project has as few as three branches, while the
largest project encompasses as many as seventy branches.
Moreover, the smart contracts selected in this paper adhered
to the following criteria: (1) They do not have any user-
defined inputs; (2) They are standalone programs that do not
call other smart contracts during their execution.

5.1.4.Experiment Setup

Considering a plethora of experimental validation outcomes
conducted by a multitude of researchers [15], [16], [20], [23], the
AGSolt framework has been configured using the algorithm
parameters that were initially set by DynaMOSA [15]. To avoid
unintended bias or distortion in our results, we consistently applied
the same algorithm parameters across the experiment. Their exact
configuration is outlined in Table 3.

Table 3. Parameter settings for the proposed algorithm

Parameter name Value
Population Size 50

Coverage Criterion
Branch

Coverage

Number of Accounts 10

Number of Individuals in Binary Tournament
Selection

10

Crossover Probability 0.75

Mutation (Replace/Delete/Insert) Probability 0. 3333333

Table 4. Group settings for LE-DynaMOSA

Group No. Group size
LED3 3

LED6 6

LED9 9

LED12 12

In the LE-DynaMOSA algorithm, selecting an appropriate
group size is crucial to achieving high algorithmic efficiency.
The precise configuration for group size is shown in Table 4.

5.2. Experimental Results and Analyses for Smart Contract

Test Case Generation

5.2.1.Different Coverage Achieved for Each Smart Contract
(RQ1)

Table 5 shows the branch coverage performance of the
DynaMOSA, PCA-DynaMOSA, and LE-DynaMOSA
algorithms. In Table 5, the "-" indicates that there is no
significant difference in the performance of the algorithm for
a particular project.

Figure 5. Number of projects with superior and inferior results in branch

coverage

pp p j

426

Table 5. Mean branch coverage achieved for each smart contract

Smart Contract
Branch Coverage (%) PCA VS

DynaMOSA
(%)

LE VS
DynaMOSA

(%)

LE VS
PCA
(%) DYNAMOSA PCA-

DYNAMOSA
LE-

DYNAMOSA
BasicToken 100 100 100 - - -

Casino 57.5 63.75 60 6.25 2.5 -3.75

DosAuction 100 100 100 - - -

EasyPayAndWithDraw 100 100 100 - - -

EZCoin 100 100 100 - - -

EtherBank 69.12 73.53 72.35 4.41 3.23 -1.18

FixedSupplyToken 98.18 100 95.45 1.82 -2.73 -4.55

FundRaising 100 100 100 - - -

Greeter 99.84 98.46 98.46 -1.38 -1.38 -

Greeter3 100 100 100 - - -

GuardCheck 92.85 92.85 92.85 - - -

Gift_1_ETH 74.44 84.44 77.78 10 3.34 -6.67

GuessTheNumberChallenge 100 100 100 - - -

IdentityManager 100 100 100 - - -

LotteryFor10 100 100 100 - - -

LotteryMultipleWinners 84.44 78.15 77.78 -6.29 -6.66 -0.37

MyAdvancedToken 100 100 100 - - -

OpenAddressLottery 100 100 100 - - -

PullOverPush 100 100 100 - - -

ProveIT 100 100 100 - - -

PermissionGroups 94.84 95.45 96.97 0.61 2.13 1.52

Rubixi 10.6 19.69 18.18 9.1 7.58 -1.52

RICO 100 100 100 - - -

Reentrance 86.42 94.29 92.86 7.86 6.43 -1.43

SecureAuction 100 100 100 - - -

tutorial-25 8.62 21.72 20.69 13.1 12.07 -1.03

tutorial-26 4.22 32.54 22.54 28.32 18.32 -10

VulnerableTwoStep 100 100 100 - - -

Mean over all SC 85.04 87.67 86.64 2.64 1.60 -1.03

Table 5 presents the branch coverage rates achieved by the
DynaMOSA, PCA-DynaMOSA, and LE-DynaMOSA
algorithms. It is discernible that both our proposed algorithms,
PCA-DynaMOSA and LE-DynaMOSA, outperform the
baseline DynaMOSA algorithm. On most of the smart
contracts, these two improved algorithms yield similar or
superior branch coverage results, albeit there are a few cases
where the coverage rates decreased. On average, the PCA-
DynaMOSA algorithm enhances branch coverage by 2.64%
compared to DynaMOSA, while the LE-DynaMOSA
algorithm registers an average improvement of 1.60% on the
smart contracts under test.
Table 6. Number of smart contracts with Better and Worse results in branch

coverage criteria

Algorithm # of
"Better"

of "Better"
(%)

of
"Worse"

of "Worse"
(%)

PCA

vs. DynaMOSA
9 32.14 2 7.14

LE

vs. DynaMOSA
8 28.57 3 10.71

PCA

vs. LE
9 32.14 1 3.57

The superior performance of the proposed algorithms can be
attributed to the challenges inherent to many-objective
optimization, where discerning the relative merit of
individuals becomes exceedingly difficult, even without the
consideration of computational resources. Traditional
algorithms such as non-dominated sorting can pose
difficulties when applied to search in hyper-objective context.
The dimensionality reduction algorithms address this issue by

reducing the dimensionality of the test case generation problem
space and constraining the number of objectives within a
manageable limit. This, in turn, allows for a degree of optimization
in the solution process. The effectiveness of the algorithms is
statistically analyzed as shown in Table 6 and Figure 5.
As evidenced by Table 6 and Figure 5, both the PCA-
DynaMOSA and LE-DynaMOSA algorithms exhibit
improvements in branch coverage over the DynaMOSA
algorithm. Specifically, The PCA-DynaMOSA algorithm
shows superior performance in 32.14% of the cases and
inferior performance in 7.14% of the cases. For the LE-
DynaMOSA algorithm, superior performance is seen in
28.57% of the cases, and inferior performance in 10.71% of
the cases. Moreover, PCA-DynaMOSA demonstrates
superior performance compared to the LE-DynaMOSA, with
superior performance in 32.14% of cases and inferior
performance in 3.57% of cases. This is due to the
dimensionality reduction of the LE algorithm, which
primarily deals with the correlation between different
coverage targets, combining different branches into inclusive
or dependent relationships. This could potentially result in
some objectives being difficult to cover, resulting in lower
branch coverage rates. From the above analysis, it can be
concluded that in the smart contracts test case generation
problem, both dimensionality reduction strategies can show
improved results in terms of branch coverage, with the PCA-
DynaMOSA algorithm delivering the better performance
among the two without considering the time consumption.

427

Table 7. Comparison of time consumption

Smart Contract
Time Consumption (s) PCA VS

DynaMOSA
(s)

LE VS
DynaMOSA

(s)

LE VS
PCA

(s) DYNAMOSA PCA-
DYNAMOSA

LE-
DYNAMOSA

BasicToken 93.67 68.33 60.86 25.34 32.81 7.47

Casino 5307.82 4729.1 4509.77 578.72 798.06 219.33

DosAuction 70.05 51.86 52.89 18.19 17.16 -1.03

EasyPayAndWithDraw 138.86 56 68.9 82.86 69.96 -12.9

EZCoin 156.25 33.54 52.9 122.71 103.35 -19.36

EtherBank 5968.44 5296.47 5209.78 671.97 758.65 86.69

FixedSupplyToken 2179.91 1693.77 1590.54 486.14 589.38 103.23

FundRaising 82.1 69.92 62.94 12.18 19.16 6.99

Greeter 168.33 152.67 132.41 15.66 35.92 20.26

Greeter3 138.54 127.2 118.95 11.33 19.59 8.25

GuardCheck 1390.39 2867.57 2705.8 -1477.19 -1315.42 161.77

Gift_1_ETH 659.95 637.33 611.31 22.62 48.64 26.02

GuessTheNumberChallenge 57.87 52.86 57.11 5.02 0.77 -4.25

IdentityManager 75.14 63.23 62.7 11.91 12.44 0.53

LotteryFor10 75.47 61.47 61.05 14 14.43 0.43

LotteryMultipleWinners 1005.42 925.33 895.8 80.09 109.62 29.52

MyAdvancedToken 130.25 127.35 114.71 2.9 15.54 12.64

OpenAddressLottery 69.6 61.32 57.42 8.28 12.18 3.9

PullOverPush 160.52 150.4 134.8 10.12 25.72 15.6

ProveIT 210.74 199.43 174.72 11.31 36.02 24.71

PermissionGroups 6237.36 5992.43 5920.74 244.93 316.63 71.69

Rubixi 602.72 593.46 567.61 9.26 35.11 25.85

RICO 72.29 61.95 62.71 10.34 9.57 -0.76

Reentrance 5647.86 5603.28 5438.9 44.57 208.96 164.38

SecureAuction 58.79 58.21 54.7 0.58 4.09 3.51

tutorial-25 630.75 824.17 795.82 -193.42 -165.07 28.35

tutorial-26 783.86 926.06 854.21 -142.2 -70.35 71.85

VulnerableTwoStep 76.03 63.97 59.71 12.06 16.31 4.26

Mean over all SC 1151.75 1126.74 1088.92 25.01 62.83 37.82

5.2.2.Search Performance and Time Consumption Achieved
by the Algorithm (RQ2)

The time consumption of the DynaMOSA, PCA-DynaMOSA,
and LE-DynaMOSA algorithms is presented in Table 7. Table
7 presents the time consumption of the DynaMOSA, PCA-
DynaMOSA, and LE-DynaMOSA algorithms for smart
contract test case generation. As can be seen, both PCA-
DynaMOSA and LE-DynaMOSA, outperforms the
DynaMOSA algorithm. These algorithms show similar or
better time efficiency on most smart contracts, with a minor
increase in time consumption in a few cases. LE-DynaMOSA
consistently yielded the best results, whereas DynaMOSA
was the least efficient. The PCA-DynaMOSA and LE-
DynaMOSA algorithms, on average, reduced time
consumption by 25.01 and 62.83 seconds, respectively,
compared to DynaMOSA across all tested smart contracts.
This is because, after dimensionality reduction was performed
on smart contracts with numerous objectives, the optimization
process covered multiple objectives with a single test case.
This resulted in a corresponding reduction in the final number
of objectives, thereby increasing the time efficiency of test
case generation. However, this also introduces certain
drawbacks, such as the extra computational time required for
the dimensionality reduction. Therefore, striking a balance
between the pros and cons of dimensionality reduction algorithms
is crucial in tackling this issue. A statistical analysis of the superior
and inferior performance in time efficiency among different
algorithms is illustrated in Table 8 and Figure 6.

Table 8. Number of smart contracts with Better and Worse results in time
consumption

Algorithm # of
"Better"

of "Better"
(%)

of
"Worse"

of "Worse"
(%)

PCA

vs. DynaMOSA
25 89.29 3 10.71

LE

vs. DynaMOSA
25 89.29 3 10.71

PCA

vs. LE
5 17.86 23 82.14

As inferred from Table 8 and Figure 6, both the PCA-
DynaMOSA and LE-DynaMOSA algorithms exhibit
significant time efficiency improvements. The PCA-
DynaMOSA algorithm shows superior performance in
89.29% of the cases, and inferior in 10.71% of the cases,
compare to DynaMOSA. The most prominent growth can be
seen in the 'Casino' and 'EtherBank' smart contracts. For the
LE-DynaMOSA algorithm, superior performance is seen in
89.29% of the cases, and inferior performance in 10.71% of
the cases, compare to DynaMOSA. Moreover, the LE-
DynaMOSA algorithm outperforms the PCA-DynaMOSA
algorithm, with superior time efficiency in 82.14% of cases
and inferior performance in 17.86% of cases. This could be
attributed to the LE's approach to dimensionality reduction,
which aims to consolidate similar objectives. In contrast, the
number of objectives post-PCA reduction is determined by
how much information can be preserved following reduction.
The impact of reduction is less noticeable for smart contracts
with fewer objectives, and the PCA reduction process is
inherently more complex.

428

Figure 6. Number of projects with superior and inferior results in time

consumption

Based on our analysis, we find that both dimensionality
reduction strategies, when applied to the test case generation
problem for smart contracts, show enhanced time efficiency.
Notably, LE-DynaMOSA yields superior results. Depending
on needs, an appropriate dimensionality reduction algorithm
can be selected. If higher test case coverage is desired, PCA-
DynaMOSA is recommended. Conversely, when balancing
coverage and time efficiency, LE-DynaMOSA serves as the
optimal choice, offering solid coverage while maintaining
time efficiency.

5.2.3.Performance of Proposed Algorithm Under Different
Group Settings (RQ 3)

The method adopted in this section of the experiment involves
dividing the objectives of smart contracts into groups. The group
sizes are set to 3, 6, 9, and 12. The analysis is then carried out
based on the average coverage rate. The experiment results are
as follows.
Table 9. Number of smart contracts with Better and Worse results in branch

coverage and time consumption

Group No. Group
size

Mean branch
coverage

Mean time
consumption

LED3 3 86.04 1165.91

LED6 6 87.84 1074.87
LED9 9 87.23 1097.82

LED12 12 86.32 1121.57

LE-DynaMOSA - 86.64 1088.92

DynaMOSA - 85.04 1151.75
As can be seen from Table 9, the grouping of the LE algorithm
indeed influences the performance of the test case generation
algorithm for smart contracts. If the grouping is too large or
too small, it may not only fail to improve the results but may
even decrease the efficiency of the algorithm. Thus, the choice
of group size is a key issue. For instance, the search results of
the LED3 and LED12 group algorithms show no significant
improvement compared to the algorithm with no grouping. In
some cases, their coverage rate is even lower, and the time
consumption is relatively increased. This is because when the
grouping is too small, the number of objectives before and
after reduction changes little or not at all. The process of
reduction increases time consumption and wastes
computational resources. On the other hand, when the
grouping is too large, there may be difficulties in convergence
of the reduction algorithm for smart contracts with a vast
number of objectives, which leads to increased time
consumption.
However, for most cases, when a reasonable group size is set,
the LE algorithm can effectively enhance the coverage rate

and time efficiency of test case generation for smart contracts.
As shown in Table 9, both LED6 and LED9 show certain
improvements compared to the DynaMOSA algorithm. But
when comparing LED6 and LED9, the former increases the
coverage rate by 0.61% and reduces the average time
consumption by 22.95 seconds. Therefore, LED6 could be
chosen as the final group number for the LE-DynaMOSA
algorithm when considering these factors. Despite LED6
showing optimal performance in this experiment, we must
acknowledge, depending on the complex of the smart contract
and the testing criterion chosen, the number of objectives in a
smart contract test case generation problem can be varied.
Therefore, realistic analysis and comparison are vital when
selecting group size to effectively improve efficiency.

6. CONCLUSION

This paper presented new approaches to the challenge of
automatically generating test cases for smart contracts in the
context of excessive number of coverage objectives. More
specifically, two dimensionality reduction strategies were
utilized to reduce the objective space of the problem and to
enhance the performance of the many-objective optimization
algorithm for smart contract test case generation, namely,
PCA and LE. The effectiveness of these algorithms was
evaluated using 28 open-source Solidity smart contract
projects from GitHub. Our results demonstrated noticeable
improvements in both test case coverage and time efficiency
when compared to the state-of-the-art DynaMOSA algorithm
adapted in AGSolt framework. Specifically, PCA-
DynaMOSA and LE-DynaMOSA algorithms are on average
notably higher in 32.14% and 28.57% of the classes under
test for branch coverage, and boosted average branch
coverage by 2.64% and 1.60%, respectively, over the
DynaMOSA algorithm. Moreover, time consumption was
reduced by an average of 25.01 seconds and 62.83 seconds
for PCA-DynaMOSA and LE-DynaMOSA algorithms,
respectively. When considering test case coverage, the PCA-
DynaMOSA algorithm was shown to be more effective.
However, in terms of a balance between coverage and time
efficiency, the LE-DynaMOSA algorithm was found to be the
optimal choice. The grouping of objectives was found to
influence the performance of the test case generation, with
group size six providing the best results among the groups
tested, demonstrating an increase in coverage rate by 0.61%
and a decrease in average time consumption by 22.95
seconds. Despite the promising results, some limitations
should be noted. The impact of dimensionality reduction was
less noticeable for smart contracts with fewer objectives, and
PCA reduction is inherently more complex. Selecting the
appropriate group size is crucial and highly dependent on the
complexity of the smart contract and the testing criteria
chosen. The future work of the study may include expanding
the framework's support for the latest smart contract versions
and developing a user-friendly GUI for improved usability,
integrating dynamic symbolic execution for fine-grained test
case searches and analyzing historical code fault to improve
the framework's bug detection capabilities and combining
test case selection and prioritization methods to enhance fault
detection efficiency.

429

REFERENCES

[1] S. Nakamoto, "Bitcoin: A peer-to-peer electronic cash system,"
Decentralized business review, 2008.

[2] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, vol. 151, pp.1-32, 2014.

[3] I. Garfatta, K. Klai, W. Gaaloul, and M. Graiet, “A survey on formal
verification for solidity smart contracts,” 2021 Australasian Computer
Science Week Multiconference, pp. 1–10, 2021.

[4] X. Mei, I. Ashraf, B. Jiang, and W. K. Chan, “A Fuzz Testing Service
for assuring smart contracts,” 2019 IEEE 19th International
Conference on Software Quality, Reliability and Security Companion
(QRS-C), pp. 544–545, 2019.

[5] H. Watanabe et al., “Blockchain contract: Securing a blockchain
applied to smart contracts,” 2016 IEEE International Conference on
Consumer Electronics (ICCE), pp. 467–468, 2016.

[6] J. Liu and Z. Liu, “A survey on security verification of blockchain
smart contracts,” IEEE Access, vol. 7, pp. 77894–77904, 2019.

[7] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pp. 254–269,
2016.

[8] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on
Ethereum Smart Contracts (SOK),” In Principles of Security and Trust:
6th International Conference, Springer, pp. 164–186, 2017.

[9] W. Zou et al., “Smart contract development: Challenges and
opportunities,” IEEE Transactions on Software Engineering, vol. 47,
no. 10, pp. 2084–2106, 2021.

[10] M. Di Angelo and G. Salzer, “A survey of tools for analyzing Ethereum
Smart Contracts,” 2019 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPCON), pp. 69–
78, 2019.

[11] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of
blockchain technology: Architecture, Consensus, and future trends,”
2017 IEEE International Congress on Big Data (BigData Congress),
pp. 557–564, 2017.

[12] H. Wu, X. Wang, J. Xu, W. Zou, L. Zhang, and Z. Chen, “Mutation
testing for ethereum smart contract,” arXiv preprint arXiv:1908.03707,
2019.

[13] R. A. Khanum et al., “On the hybridization of global and local search
methods,” Journal of Intelligent &amp; Fuzzy Systems, vol. 35,
no. 3, pp. 3451–3464, 2018.

[14] Y. Dong and J. Peng, “Automatic generation of software test cases
based on improved genetic algorithm,” 2011 International Conference
on Multimedia Technology, pp. 227–230, 2011.

[15] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, 2018.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[17] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
Transactions on Software Engineering, vol. 39, no. 2, pp. 276–291,
2013.

[18] A. Panichella, F. M. Kifetew, and P. Tonella, “Lips vs Mosa: A
replicated empirical study on Automated Test Case Generation,”
Search Based Software Engineering: 9th International Symposium,
Springer, pp. 83–98, 2017.

[19] S. Vogl et al., “Evosuite at the SBST 2021 Tool Competition,” 2021
IEEE/ACM 14th International Workshop on Search-Based Software
Testing (SBST), pp. 28–29, 2021.

[20] A. Panichella, F. M. Kifetew, and P. Tonella, “Reformulating branch
coverage as a many-objective optimization problem,” 2015 IEEE 8th

International Conference on Software Testing, Verification and
Validation (ICST), pp. 1–10, 2015.

[21] O. Sahin, B. Akay, and D. Karaboga, “Archive-based multi-criteria
artificial bee colony algorithm for whole test suite generation,”
Engineering Science and Technology, an International Journal, vol. 24,
no. 3, pp. 806–817, 2021.

[22] T. Y. Chen, G. Eddy, R. Merkel, and P. K. Wong, “Adaptive random
testing through dynamic partitioning,” Fourth International Conference
onQuality Software, 2004. QSIC 2004. Proceedings., pp. 79–86.

[23] D. Li et al., “Automatic test case generation using many-objective
search and principal component analysis,” IEEE Access, vol. 10, pp.
85518–85529, 2022.

[24] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[25] C. V. Ramamoorthy, S.-B. F. Ho, and W. T. Chen, “On the automated
generation of Program Test Data,” IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 293–300, 1976.

[26] K. Inkumsah and T. Xie, “Improving structural testing of object-
oriented programs via integrating evolutionary testing and symbolic
execution,” 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, pp. 297–306, 2008.

[27] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test
suite generation with dynamic symbolic execution,” 2013 IEEE 24th
International Symposium on Software Reliability Engineering
(ISSRE), pp. 360–369, 2013.

[28] D. Li, W. Eric. Wong, S. Li, and M. Chau, “Improving search-based
test case generation with local search using adaptive simulated
annealing and dynamic symbolic execution,” 2022 9th International
Conference on Dependable Systems and Their Applications (DSA), pp.
290–301, 2022.

[29] M. Modonato, “Combining Dynamic Symbolic Execution, Machine
Learning and Search-Based Testing to Automatically Generate Test
Cases for Classes,” arXiv preprint arXiv:2005.09317, 2020.

[30] S. Driessen, D. Di Nucci, G. Monsieur, and W. J. Van Den Heuvel,
“AGSolt: A tool for automated test-case generation for solidity smart
contracts,” arXiv preprint arXiv:2102.08864, 2021.

[31] M. Olsthoorn, D. Stallenberg, A. Van Deursen, and A. Panichella,
“Syntest-solidity: Automated test case generation and fuzzing for smart
contracts,” 2022 IEEE/ACM 44th International Conference on
Software Engineering: Companion Proceedings (ICSE-Companion),
pp. 202–206, 2022.

[32] S. Shamshiri et al., “Do automatically generated unit tests find real
faults? an empirical study of effectiveness and challenges (T),” 2015
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 201–211, 2015.

[33] P. Zhang, J. Yu, and S. Ji, “ADF-GA: Data flow criterion based test
case generation for Ethereum smart contracts,” Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, pp. 754–761, 2020.

[34] S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study of
Automated Unit Test Generation for Python,” Empirical Software
Engineering, vol. 28, no. 2, p. 36, 2023.

[35] A. Ramírez, J. R. Romero, and S. Ventura, “A survey of many-
objective optimisation in search-based software engineering,” Journal
of Systems and Software, vol. 149, pp. 382–395, 2019.

[36] S. Ji, S. Zhu, P. Zhang, H. Dong, and J. Yu, “Test-case generation for
data flow testing of smart contracts based on improved genetic
algorithm,” IEEE Transactions on Reliability, vol. 72, no. 1, pp. 358–
371, 2023.

[37] B. M. S. Hasan and A. M. Abdulazeez, “A review of principal
component analysis algorithm for dimensionality reduction,” Journal
of Soft Computing and Data Mining, vol. 2, no. 1, pp.20-30, 2021.

[38] C. Chen, L. Zhang, J. Bu, C. Wang, and W. Chen, “Constrained
laplacian eigenmap for dimensionality reduction,” Neurocomputing,
vol. 73, no. 4–6, pp. 951–958, 2010.

430

